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Abstract
Large Language Models (LLMs) often struggle
with tasks requiring mathematical reasoning,
particularly multiple-choice questions (MCQs).
To address this issue, we developed LLaMa-
SciQ, an educational chatbot designed to as-
sist college students in solving and understand-
ing MCQs in STEM fields. We begin by fine-
tuning and aligning the models to human pref-
erences. After comparing the performance of
Mistral-7B and LLaMa-8B, we selected the
latter as the base model due to its higher eval-
uation accuracy. To further enhance accuracy,
we implement Retrieval-Augmented Genera-
tion (RAG) and apply quantization to compress
the model, reducing inference time and increas-
ing accessibility for students. For mathematical
reasoning, LLaMa-SciQ achieved 74.5% accu-
racy on the GSM8k dataset and 30% on the
MATH dataset. However, RAG does not im-
prove performance and even reduces it, likely
due to retriever issues or the model’s unfamil-
iarity with context. Despite this, the quantized
model shows only a 5% loss in performance,
demonstrating significant efficiency improve-
ments.

1 Introduction

Large Language Models (LLMs) are known to per-
form poorly on questions requiring advanced math-
ematical reasoning (Wu et al., 2023). This is espe-
cially true for the university level problems (Wang
et al., 2024). In literature, the failure of current
approaches is attributed to inability of LLMs to
recognize and correct a wrong answer (Imani et al.,
2023) as well as catastrophic forgetting of linguis-
tic skills when trained on maths data (Sharma et al.,
2023). The issues cannot be fully addressed with
a simple prompting strategy due to data variability
(Wang et al., 2024).

This project explores state-of-the-art LLMs for
creation of an accessible chatbot that assists stu-
dents in mathematics, physics and computer sci-
ence. Specifically, we fine-tune LLaMa-3-8B

model as well as Mistral-7B on a variety of mathe-
matical and scientific datasets further using Direct
Preference Optimization (DPO) to align model’s re-
sponses to the ones preferred by a student. We com-
pare the performances of the models and demon-
strate the significantly superior performance of the
LLaMa model with which we proceed. We try to
enhance the accuracy of fine-tuned LLaMa-3-8B
model by applying Retrieval Augmented Genera-
tion (RAG). Finally, we quantize the LLM for more
efficient inference, making it suitable for students
needs.

2 Related Work

With recent release of ChatGPT-3.5 and ChatGPT-
4, the number of people using LLMs for educa-
tion has sky-rocketed (Fütterer et al., 2023). To
leverage its capabilities while making user-friendly
interfaces vast amount of research is dedicated to
creation of LLM based Chatbots for academic pur-
poses (Odede and Frommholz, 2024). Despite suc-
cess of ChatGPT models on lingustic tasks, their
performance was limited on problems involving
mathematical reasoning. This is especially true
for MCQ questions where the answer is not verbal.
This is showcased by the work of (Savelka et al.,
2023), where GPT model struggled to give the cor-
rect answer to the questions that do not contain
natural language.

To improve the performance of the pre-trained
LLM model on mathematical questions while en-
suring the alignment of the responses with the in-
tended purposes and human values, we considered
both Supervised Fine-tuning on mathematical and
scientific datasets as well as DPO on the prefer-
ence pairs ranked by students. This approach was
inspired by InstructGPT (Ouyang et al., 2022) in
aligning LLMs with human preferences. We also
considered DPO with an offset (Amini et al., 2024).
This approach introdues variability in treatment of
preference pairs and could be less robust, since
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the inferred offset value might be high in a mis-
annotated responses and confuse the model. There-
fore, to achieve good results on noisy data while
keeping the implementation simple, we chose Con-
servative DPO (cDPO) loss for DPO fine-tuning
strategy, primarily due to its robustness on noisy
data.

Further refining the model, we have considered
RAG. Initially, we aimed to use pre-trained RAG
retriever (Karpukhin et al., 2020) or adopting the
novel concept of Retrieval Augmented Fine-Tuning
(RAFT) (Zhang et al., 2024). Thoroughly review-
ing the literature (Gao et al., 2024) we yielded to
the Naive RAG strategy due to good performance
and straightforwardness of the approach.

Finally, we considered quantizing the model to
reduce the computational costs when using the
Chatbot while maintaining good response accu-
racy. At first, we sought to use QuIP (Chee et al.,
2024) and recently released QuIP# (Tseng et al.,
2024) due to its ability to leverage incoherence
in weights and Hessian matrices. We have also
considered QLoRA (Hu et al., 2021), which is not
computationally demanding, yet preserves the 16-
bit fine-tuning task performance of LLMs. Before
attempting the advanced methods, we have tried
GPTQ (Frantar et al., 2023). Nonetheless, facing
some numerical issues with quantizing our model
with GPTQ, we decided to use the 4-bit quantiza-
tion provided by Unsloth bitsandbytes library.

Overall, our work is a nice step towards creating
an efficient, student-oriented educational assistant
for questions requiring mathematical reasoning.

3 Approach

Our approach consisted of performing SFT train-
ing on both Mistral-7B and LLaMa-3-8B. We then
compared the performance of two models with SFT
and DPO training and proceeded with LLaMa-3-
8B which performed better on the evaluation set
(Figure 1). In this section, we outline the details
of the models and their fine-tuning strategy with
emphasis on LLaMa-3-8B.

3.1 Base Model Architecture

LLaMa-3-8B (AI@Meta, 2024) is an auto-
regressive language model featuring an enhanced
transformer architecture with a standard decoder-
only design. The model integrates supervised
fine-tuning (SFT) and reinforcement learning with
human feedback (RLHF) to better align with hu-

man preferences regarding safety and helpfulness.
Llama 3, which uses a tokenizer with a 128K-token
vocabulary for more efficient language encoding,
shows significant performance improvements
over its predecessor. The model, trained on
sequences up to 8,192 tokens with boundary-aware
self-attention, uses Grouped-Query Attention
(GQA) to enhance inference scalability.

Mistral-7B (Jiang et al., 2023), a language
model with 7 billion parameters, utilizes a
transformer-based architecture comprising multi-
ple transformer blocks. It employs sliding window
attention that allows the model to attend to tokens
outside of the window, Rolling Buffer Cache to
reduce the cache memory usage while keeping the
model quality. It also utilizes pre-fill and chunking,
which involve loading known parts of a prompt into
the (k, v) cache to facilitate token generation. If
the prompt is lengthy, it is segmented into smaller
chunks, each pre-filled into the cache to enhance
processing efficiency during token prediction.

3.2 Training Pipeline

The training pipeline for LLaMa-3-8B model is
demonstrated in Figure 1. We first performed
Supervised Fine-tuning on a mix of specialized
maths and science datasets. We then performed
DPO training using preference data generated
and annotated by students via cDPO loss. Fi-
nally, we gauged the performance of the model
on AQuA-Rat (Ling et al., 2017) dataset which con-
tains STEM-related MCQ questions.

Mistral-7B used the same process as LLaMa,
except for the final SFT, since LLaMa showed su-
perior performance (Figure 1). Ultimately, we have
not implemented both due to time constraints.

3.2.1 Supervised Fine Tuning
The results of supervised fine-tuning of two models
are demonstrated in Table 1.

3.2.2 Preference Data Collection
To collect preference data, a cohort of 300 students
was asked to generate two responses, a better one
and a slightly worse one but preferably still correct,
to the question using GPT-wrapper. The students
were further asked to rank the responses.

To generate answers for the dataset of questions
in mathematics, physics, and computer science,
we have developed a prompting strategy that in-
corporates several techniques. Firstly, we create a
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separate chat for each subject id. Secondly, we use
Chain-of-Thought (CoT) (Wei et al., 2022), which
guides the model to reach conclusions in a step-by-
step manner. Thirdly, the model is prompted with
the instruction provided in B.5. Finally, for gen-
erating preference pairs, we employ the following
method: to achieve a better response, we prompt
the model to re-read the question before attempt-
ing to solve it. This methods was shown by (Xu
et al., 2024) to consistently improve performance
for LLMs, except for Vanilla ChatGPT. For the
worst answer, the model is instructed to provide a
very brief explanation.

3.2.3 Reward Model
The reward model is a critical component of the
DPO fine-tuning strategy. The reward model is
based on the policy that maximizes the reward with
KL constraint to the reference policy:

π∗ = argmax
π

Ey∼π

[
r(y)− β log

π(y)

πref(y)

]
Considering a small probability that the preference
pair could be flipped, the preferred response is in
reality less correct or explicit than the other one,
we can derive the following DPO loss to optimise
the reward model:

Lϵ
DPO(θ, yw, yl) = −(1− ϵ) log p̂θ(yw > yl)

(1)

− ϵ log(1− p̂θ(yw > yl))
(2)

= (1− ϵ)LDPO(θ, yw, yl) (3)

+ ϵLDPO(θ, yl, yw), (4)

where ϵ indicates the probability of the answer be-
ing wrong (or flipping the pair).

Base Model Strategy Test Rwrds Acc.

LLaMa-3-8B DPO 79.7%
LLaMa-3-8B SFT+DPO 79.3%
Mistral-7B DPO 76.5%
Mistral-7B SFT+DPO 71.3%

Table 1: Accuracy scores of the models on 1000 samples
of the test set.

3.3 Retrieval Augmented Generation
We augment LLaMa-SciQ by incorporating
Retrieval-Augmented Generation (RAG) methods.

This approach stands out as one of the most effec-
tive means to enhance the predictive capabilities
of our model. RAG combines the capabilities of
generative models, dense vector indices of a racor-
pus of documents, and pre-trained neural retrievers.
Figure 2 summarizes our RAG pipeline, known
as the Naive RAG. We use the dataset described
in 4.1.4 as our Dense Passage Retrieval (DPR) cor-
pus of documents over which we create an index us-
ing Facebook’s FAISS library (Douze et al., 2024).
Documents are then retrieved using Facebook’s
DPR question encoder (Karpukhin et al., 2020) and
added to the prompt in the format detailed in Ap-
pendix D.1.

We observed that our model is getting biased
by saying to use the provided information. So we
changed the prompt for RAG to tell the model to
consider the model but not get biased on the infor-
mation and try to fulfill the objective of the ques-
tions.

3.4 Quantization

We took an alternative root compared to standard
quantization techniques. In particular, we specified
the bytes-and-bits (bnb) parameter when loading
the model using Unlosth package. We, therefore,
reduced the weights to 4-bits while sustaining the
accuracy.

When you enable "load_in_4bits" in the
"from_pretrained" function of the unsloth reposi-
tory, the model utilizes a quantization technique fa-
cilitated by the bitsandbytes library. This technique
allows the model weights to be represented with
4-bit precision, significantly reducing the model’s
memory footprint while attempting to preserve per-
formance.

This 4-bit quantization primarily involves the
transformation of model weights, previously in full-
precision formats like fp16 or bf16, into a 4-bit
format. The process entails creating instances of
linear layers designed for 4-bit operations (e.g.,
"Linear4bit"), and then loading the original model’s
weights into these quantized modules. The actual
quantization happens when these modified models
are transferred to a computation device like a GPU.

This quantization approach can utilize different
data types for quantization, like FP4 (Float4) or
NF4 (NormalFloat4), which are tailored for differ-
ent kinds of data distributions and usage scenar-
ios. For example, NF4 is designed for data that
naturally follows a normal distribution, offering

3



LLaMa-SciQ: An Educational Chatbot for Answering Science MCQ EPFL – CS-552

Figure 1: The Training Pipeline: Organized into three consecutive stages; Supervised Fine-Tuning, Direct Preference
Optimization Training, and Multiple Choice Question Answering Specialization.

Figure 2: The RAG Pipeline

potential performance improvements in such cases.

4 Experiments

4.1 Data
This section outlines the datasets created for our
model’s alignment stages. Samples of the datasets
can be found in Appendix B.

4.1.1 SFT Dataset
We first introduce StemQA, a specialized dataset
to extend our model’s performance on math
and coding questions. This dataset is a

blend of MetaMathQA (Yu et al., 2023) and
CodeFeedback-Filtered-Instruction (Zheng
et al., 2024) datasets. It is balanced so that 75% of
the questions are math-related, while the remaining
25% are coding-related. Table 2 presents these
proportions. The answers now include the rationale
followed by "The answer is: <Maths/Code>" to
simplify future answer extraction.

Dataset Size Ratio

MetaMathQA 375,000 75%
CodeFeedback 125,000 25%

StemQA (ours) 500,000 –

Table 2: Dataset sizes and their ratios of the SFT dataset

MetaMathQA Augmented version of the
training sets from GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021).

CodeFeedback-Filtered-Instruction Curated
collection of code instruction queries extracted
from four prominent open-source code instruction
tuning datasets.

4.1.2 DPO Dataset
Then, we introduce StemDPO, a dataset to align
our model with human preferences, focusing
particularly on STEM questions. This dataset
combines our class preference pairs with the PyDPO
and MetaMathDPO datasets. Our objective was to
expand this dataset to a size of 50,000 samples,
maintaining the same distribution proportions as
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the SFT dataset, assuming our class preferences
are similarly balanced (see Table 3).

Dataset Size Ratio

ClassPreferences 21,596 43%
PyDPO 7,101 14%
MetaMathDPO 21,303 43%

StemDPO (ours) 50,000 –

Table 3: Dataset sizes and their ratios of the DPO dataset

PyDPO DPO dataset meant to enhance python
coding abilities. This dataset uses the excellent
Tested-22k-Python-Alpaca dataset as the
"chosen" responses and generates the "rejected"
values with a mix of airoboros-l2-13b-3.1 and
bagel-7b-v0.1.

MetaMathDPO Paired version of the
MetaMathQA dataset. To construct the paired
preferences, the original responses are taken as
the preferred completions and randomly corrupted
(at an intermediate calculation) so that it is less
preferable.

4.1.3 MCQ Dataset
We present StemMCQ, a modified version of
the well-known AQuA-RAT dataset (Ling et al.,
2017), specifically designed to align the model
with its primary purpose: answering STEM
multiple-choice questions. The answers include
the AQuA-RAT rationale followed by our extraction
flag: "The answer is: <MCQ Letter>". We chose
to include the rationale in our responses, as the
Chain-of-Thought approach has demonstrated
improved results compared to simply providing
the answer (Wei et al., 2022). Table 4 presents the
dataset size.

Dataset Size Ratio

AQuA-RAT 97,500 100%

StemMCQ (ours) 97,500 –

Table 4: Dataset sizes and their ratios of the MCQ
dataset

AQuA-RAT A large-scale dataset consisting of
approximately 100,000 algebraic word problems.

The solution to each question is explained step-by-
step using natural language.

4.1.4 DPR Dataset
To enable RAG in our model, we developed
StemDPR, a DPR corpus of Wikipedia sci-
ence documents. This dataset is built from
WikiStemCorpus1, a science-focused subset of the
well-known RAG dataset wiki_dpr (Karpukhin
et al., 2020). We compute the document embed-
dings of WikiStemCorpus using Facebook’s DPR
context encoder (Karpukhin et al., 2020).

4.2 Evaluation

In this section, we define the evaluation process,
which is divided into multiple steps. The initial
step involves selecting the best model based on
its generation quality. The final step assesses the
predictability power of our MCQA model.

To select the best generation models, we need
to assess the quality of their generation in terms of
correctness and reasoning.

• DPO Reward Accuracies (Rafailov et al.,
2023): This allows us to assess the prefer-
ence alignment of the model’s generation in
terms of human alignment.

To thoroughly assess our model’s performance
on STEM QA, we choose diverse datasets that repre-
sent various skills the model should have acquired.
First, we use benchmark datasets to evaluate the
correctness of our first-stage model in answering
open STEM questions:

• MATH (Hendrycks et al., 2021): This dataset
of 5k advanced mathematics questions to as-
sess the model’s mathematical step-by-step
reasoning skills.

• GSM8K (Cobbe et al., 2021): A dataset of 8.5K
(1k testing split) high quality linguistically
diverse grade school math word problems cre-
ated by human problem writers. Used to fur-
ther evaluate the model’s mathematical rea-
soning abilities.

Then, we use MCQA datasets to assess the
MCQA performance of our final specialized model:

• MCQA Examples EPFL: A dataset of around
350 samples designed to measure general

1See the dataset here.
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knowledge and reasoning across multiple do-
mains(It covers 57 subjects across STEM),
used to test both world knowledge and prob-
lem solving ability.

We use accuracy as our metric since it was our
target performance metric throughout the project
and is best suited for evaluating unique MCQA
answers.

4.3 Baseline

We compare LLaMa-SciQ with the candidate
base models: LLaMa-3-8B (AI, 2024) and
Mistral-7B (Jiang et al., 2023). At each step of
the training pipeline (described in Section 3), we
conduct ablation studies by comparing the newly
trained model with the model from the previous
step.

4.4 Setup

We adapt our SFT and DPO procedures to run on
a single V-100 GPU with 32 GB of VRAM and a
single A-100 GPU with 40 GB of VRAM, respec-
tively. We utilize the Unsloth library (unslothai and
contributors, 2024), designed for fast and resource-
efficient training of large language models. Com-
bining Unsloth’s techniques with LoRa adaptors
allows us to efficiently align LLaMa-3-8B and
Mistral-7B within our resource constraints. In ad-
dition, due to the extended duration of the training
process (more than 15 hours), extensive hyperpa-
rameter tuning is not practical.

4.4.1 1st SFT – Mathematical Reasoning

Therefore, the SFT hyperparameters (see Table 9
in the appendix) are chosen based on the state-of-
the-art SFT of the models. For similar reasons, we
train our models using two relatively small, random
sample sizes from the full SFT dataset (described
in Section 2.1): 10,000 and 100,000 examples.

We conduct two SFT sessions for each model.
The best models are selected from the 100,000-
sample-size runs, showing the best results in the
generation (see an example in D.2).

4.4.2 DPO Alignment

For the DPO training procedure, we split the DPO
dataset described in Section 4.1.2 into 45,000 sam-
ples for training and the remaining for testing. The
hyperparameter settings are described in Table 9.

4.4.3 2nd SFT – MCQA Reasoning
Finally, using the same hyperparameter setup as in
the first SFT sessions, we perform the final SFT
training for MCQA specialization using 97,500
MCQ samples. Figure 3 presents the training loss
of the kept run.

Figure 3: MCQ-SFT Training Loss

4.5 Results
The intermediate and final results can be found in
Table 6, Table 5, and Table 7.

• MATH (Hendrycks et al., 2021): On the MATH
dataset, known for its complexity and depth,
we managed to achieve the performance an-
nounced by Meta on their introduction page
of LLaMA-3-8B, with a score of 30%. This
demonstrates the power of LLaMA-3, espe-
cially in comparison to the Mistral-7B, where
our results were consistent with Mistral’s re-
search, showing a score of around 11%.

• GSM8K (Cobbe et al., 2021): For the GSM8K
dataset, which is less challenging than MATH,
our score was slightly below Meta’s results
by 5.1%, but still more than 40% higher than
Mistral’s performance. Note that we used 0-
shot prompting for both evaluations, whereas
Meta used few-shot prompting.

Finally, for the evaluation of LLaMa-SciQ on
MCQA from the EPFL course, the results were
decent but somewhat disappointing compared to
the general math benchmarks.

• MCQA Examples EPFL: The best score was
achieved by the policy model, outperforming
the two specializations by around 5%. The
RAG and Quantized models showed similar
performance, with a difference of approxi-
mately 0.555 in accuracy. The RAG sys-
tem did not improve accuracy and seemed
to lead to poorer decisions, possibly due to
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the low similarity power of the retriever, inad-
equate content of the STEM DPR dataset, or
the model’s unfamiliarity with using context
in prompts. However, the Quantized model,
despite a significant reduction in size, only
showed a 5% loss in performance, which is a
notable result.

Base Model MATH

LLaMa-3-8B-Instruct 30% (4-shot, CoT)
LLaMa-3-8B(SFT+DPO) 30% (0-shot)
Mistral-7B-Instruct 11% (4-shot, CoT)
Mistral-7B(SFT+DPO) 10.3% (0-shot)

Table 5: Performance comparison of different models
on MATH benchmark

Base Model GSM8k

LLaMa-3-8B-Instruct 79.6% (8-shot, CoT)
LLaMa-3-8B(SFT+DPO) 74.5% (0-shot)
Mistral-7B-Instruct 39.9% (8-shot, CoT)
Mistral-7B(SFT+DPO) 28.5% (0-shot)

Table 6: Performance comparison of different models
on GSM8k benchmark

Base Model EPFL MCQA

LLaMa-SciQ 45.21% (0-shot)
LLaMa-SciQ+RAG 40.62% (0-shot)
LLaMa-Sci+Quanttize 40.07% (0-shot)

Table 7: Models performance on MCQA EPFL bench-
mark

5 Analysis

We noted that our model exhibits reasonable gener-
ation capabilities and demonstrates sound reason-
ing when answering questions. During our SFT
and DPO training, which frequently involved math-
ematical questions, our model proved particularly
adept at handling them. However, as the benchmark
(Table 7) included questions from a wide range of
disciplines, the results were generally acceptable.

We believe our quantized model maintained the
accuracy of the LLaMa-SciQ model, as it occasion-
ally achieved higher accuracy in our tests. During

development, we experimented with various config-
uration settings, including adjustments to the tem-
perature, to optimize performance. Table 8 presents
the best results of the generation tested on a 10-
subsample of the EPFL MCQ dataset; the full test
results are presented in Appendix E). Despite these
efforts, we think the generation configuration could
still benefit from fine-tuning. With a large beam
size in the beam search, the quantized model’s per-
formance was comparable to that of LLaMa-SciQ.
However, due to resource constraints, we reduced
the beam size to 1 for our final benchmark.

The RAG model did not meet our goal of enhanc-
ing accuracy. We attribute this to the encoder used
for information retrieval, which was not specifi-
cally fine-tuned for our model. Consequently, the
encoder sometimes retrieved irrelevant informa-
tion, potentially biasing the model towards incor-
rect data. Additionally, our model was trained to
adhere to a specific template rather than to utilize
the provided information effectively, which likely
contributed to its underperformance.

Generation Configuration Accuracy

Greedy 40%
Sample (default) 40%
Sample (default, temp=0.3) 50%
Sample (default, top_p=0.95,
temp=0.3)

40%

Table 8: Accuracy of Different Sampling Methods on
the 10-sample of EFPL MCQA

6 Ethical considerations

In this section, we address the ethical considera-
tions relevant to LLaMa-SciQ.

Low-Resources Language Performances The
high performance of LLaMa-3-8b on high-resource
languages (AI, 2024) suggests that LLaMa-SciQ
should be capable of handling questions in most
of these languages (with the best performance
on English MCQs, as the SFT dataset is English-
based). However, additional work is needed to
extend its capabilities to low-resource languages,
such as Urdu and Swahili. This could be achieved
by expanding our SFT datasets to teach the model
multilingual scientific reasoning. Furthermore,
although more challenging and costly, we could
extend our DPO dataset to include low-resource
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languages preferences to improve the model’s
generations in these latest.

Accessibility for Deaf Community The exclu-
sion of signed languages from modern language
technologies marginalizes Deaf communities, who
prefer to communicate in signed languages on-
line (Yin et al., 2021). Therefore, it is essential to
include signed language compatibility in our model
to respect this community and support its com-
munication preferences. One potential approach
to achieve this is by harnessing Sign Language
Translation (SLT), which has seen advancements
through deep learning techniques (Al-Qurishi
et al., 2021; Chen et al., 2022), such as the
STMC-Transformer model (Yin and Read, 2020).
By integrating SLT into LLaMa-SciQ’s pipeline,
we could easily address signed questions.

Social Bias & Harmful Content The model,
designed for the MCQA task, should not exhibit
more harmful content or social bias than its in-
herent base model. However, for broader usages,
studies indicated that LLM presents vulnerabili-
ties exploitable to output harmful content or social
bias (Wei et al., 2024; Deng et al., 2023). There-
fore, future work should involve additional train-
ing to mitigate LLaMa-SciQ’s potential biases or
harmful content that may arise from out-of-scope
usages. This can be achieved using Meta’s Respon-
sible Use Guide (RUG)2 and LLaMa-Guard (?), an
LLM-based safeguard model designed for Human-
AI conversation use cases.

7 Conclusion

In this work, we propose LLaMa-SciQ: an ed-
ucational chatbot designed for science multiple-
choice question answering (MCQA). The model is
a fine-tuned LLaMa-3-8B aligned with human pref-
erences using the novel STEM datasets introduced
(StemQA, StemDPO, StemMCQ). It also employs cost-
reducing training techniques such as Unsloth (un-
slothai and contributors, 2024) to address limita-
tion in resources. LLaMa-SciQ maintains the per-
formance of state-of-the-art large language mod-
els in scientific question answering, achieving up
to 74.5% on the GSM8k benchmark and 30% on
the MATH benchmark using zero-shot prompting.
These results are comparable to the base model
using eight-shot prompting on these benchmarks.

2See the RUG here.

Exploring few-shot prompting could be a promis-
ing direction for future work. While the model’s
performance on the MCQA task yielded relatively
low results, they are acceptable considering the
complexity of such a specialized task.

Future work includes enhancing the model’s per-
formance by exploring various prompting strate-
gies (Wang et al., 2022; Wan et al., 2023). Addi-
tionally, adapting the model to more languages –
with an emphasis on signed languages – and eval-
uating its social biases will be essential to make it
accessible to all, thereby strengthening its educa-
tional impact.

8
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B Datasets Samples

B.1 SFT Dataset

Sample from the SFT dataset

{
"problem": "Determine the sum of the
positive factors of 48.",
"solution": "To find the sum of the
positive factors of 48, we can [...].
The answer is: 124"
}

B.2 DPO Dataset

Sample from the DPO dataset

{
"prompt": "Tom eats a pound of
carrots [...] how many calories did
he eat in total?",
"chosen": "Tom eats 1 pound of
carrots, which have 51 calories per
pound, so he eats 1*51 = 51 calories
[...] The answer is: 85",
"rejected": "Tom eats 1 pound of
carrots, which have 51 calories per
pound, so he eats 1*51 = 97 calories
[...] The answer is: 85"
}
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B.3 MCQ Dataset

Sample from the MCQ dataset

{
"subject": "maths",
"question": "There are 8 players in
a chess group [...] how many total
games will be played?",
"options":
["10","30","28","60","90"]
"answer": "10 players are there.
two players [...] The answer is:
C."
}

B.4 DPR Dataset

Sample from the DPR dataset

{
"text": "In mathematical analysis,
the Cauchy index is [...] the degree
of q.",
"title": "Cauchy index"
"embeddings": [-0.6179105639457703,
..., 0.35533231496810913]
}

B.5 Intruction for DPO Generation

Instruction to generate examples for DPO

"Imagine you’re a teaching assistant for a
<course_topic> course. A student has just
asked the question above. Your goal is to
provide a comprehensive and detailed expla-
nation, similar to how you would guide a
student in understanding the concept thor-
oughly. Use scientific reasoning and rele-
vant examples to clarify the topic and ensure
a deep understanding by the student."

C Training Details

Here we present more details for SFT and DPO
training.

C.1 Training Hyperparameters

Table 9 presents the hyperparameters that we used
for each training.

Hyperparameter SFT Values DPO Values

Epochs 1 1
Batch Size 4 2
Warmup Ratio 0.1 0.1
Learning Rate 2e-4 5e-5
LR Scheduler Linear Cosine
Weight Decay 1e-2 1e-2
Neftune Noise α 5 -
GA Steps 1 4

Table 9: SFT and DPO Hyperparameters

C.2 Training Metrics

C.2.1 Maths-SFT

Figure 4 presents the most important training met-
rics values of the best Maths-SFT runs of each
model.

(a) Learning Rate vs Steps

(b) Training Loss vs Steps

Figure 4: SFT Training statistics for Llama and Mistral
models on 100,000 samples.

C.2.2 MCQ-SFT

Figure 5 presents the training metrics of the MCQ-
SFT.
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(a) Training Loss

(b) Learning Rate

(c) Gradients Norm

Figure 5: Training Analytics: Transformers Models

D Model Samples

D.1 Prompt Format

Below is the prompt format used for the genera-
tions. If a section is not relevant for the task (e.g.
context for non-RAG generation or options for non-
MCQ), it is removed.

Prompt Format

Context Information:
{RAG Context}

Below is a MCQ that you will need to
answer using the above context information.
Write an answer that fully explains your
reasoning.

### Question:
{Question}

### Options:
{Options}

### Answer:
{Answer}

D.2 Generation
Here we present a sample of our LLaMa-3 maths
fine-tuned model’s generation. The blue part is the
one generated by the model.

Aligned LLaMa-3 Model Generation

Below is a question that you will need to
answer. Write an answer that fully explains
your reasoning.

###Question:
The town of Belize has 400 homes. One
fourth of the town’s homes are white.
One fifth of the non-white homes have
a fireplace. How many of the non-white
homes do not have a fireplace?

###Answer:
One fourth of the town’s homes are white,
so there are 400/4 = 100 white homes. The
remaining homes are non-white, so there are
400 - 100 = 300 non-white homes. One fifth
of the non-white homes have a fireplace, so
there are 300/5 = 60 non-white homes with
a fireplace. Therefore, the number of non-
white homes that do not have a fireplace is
300 - 60 = 240. ### 240 The answer is: 240

E Generation Tuning

Table 10 presents the MCQA accuracy of each
configuration tested on a 10-subset of the EPFL
MCQA dataset
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Generation Configuration Accuracy

Greedy 40%
Beam Search (B=3) 30%
Beam Search (B=5) 30%
Sample (default) 40%
Sample (default, temp=0.3) 50%
Sample (default, temp=0.1) 40%
Sample (default, temp=1.2) 30%
Sample (default, top_p=0.95,
temp=0.3)

40%

Sample (default, top_p=0.85,
temp=0.3)

40%

Table 10: Accuracy of Different Sampling Methods on
10-sample of EFPL MCQA
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