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Large language models (LLMs), such as ChatGPT and Copi-
lot, are transforming software development by automating
code generation and, arguably, enable rapid prototyping,
support education, and boost productivity. Therefore, cor-
rectness and quality of the generated code should be on
par with manually written code. To assess the current state
of LLMs in generating correct code of high quality, we con-
ducted controlled experiments with ChatGPT and Copilot:
we let the LLMs generate simple algorithms in Java and
Python alongwith the corresponding unit tests and assessed
the correctness and the quality (coverage) of the generated
(test) codes. We observed significant differences between
the LLMs, between the languages, between algorithm and
test codes, and over time. The present paper reports these
results together with the experimental methods allowing
repeated and comparable assessments for more algorithms,
languages, and LLMs over time.
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1 | INTRODUCTION
Artificial Intelligence (AI) has already established a significant role in modern software development. AI-powered
coding assistants of various kinds have been introduced including tools for bug and vulnerability detection, program
analysis, test automation and fuzzing, and code generation. Due to the popularity and improvements of Large Lan-
guage Models (LLMs), fully automated code generation seems to be in reach. Expectations range from an increase in
programming productivity, over lifting the abstraction level in programming, to the end of programming as a profession,
substitute by prompts that describe what software is supposed to do instead of how.
This raises several questions: How advanced are LLMs today, i.e., can they generate correct and clean code and can
they generate test code to provide confidence in the correctness? Also, are their capabilities different for different
programming languages and, finally, are they improving over time? Our study aimed at investigating these questions
in controlled experiments.
However, our study is restricted in several ways. First, we selected basic textbook algorithms, published in many
textbooks and repositories. This setup should be in favor of LLMs as they learn from examples. Second, we restricted
ourselves to Python and Java ranking second and third in the top programming languages on GitHub [1], which again
was in favor of LLMs. The reason for not choosing JavaScript topping the ranks is that we wanted to include a
compiled, typed language (Java) together with an interpreted, untyped language (Python). Third, we analyzed the code
generation performance of only two LLM tools, ChatGPT [2] and GitHub Copilot [3], representing general purpose
(ChatGPT) and programming specific (Copilot) LLMs; we acknowledge that other LLM code generation tools might
perform differently, cf. a selection of such tools [4].

1.1 | Background
The code generating AI systems considered in the present study are based on Large Language Models.
A Large LanguageModel is a type of artificial intelligence used for processing language [5]. LLMs are machine learning
models, more specifically deep neural networks, and a subset of language models, or language modelling, which aims
to improve the ability of machines to understand language. Typically, this is done by modelling the probabilities of
word sequences in text, and thus calculating the likelihood of these sequences occurring in the rest of the text [6, 7].
The distinction between conventional language models and LLMs is the amount of mostly unlabeled data used for
training. The capacity of LLMs is scaled with the size of the training data set [7].
ChatGPT [2] is an LLM based chat system created by OpenAI; it is a fine-tuned variant of the LLMGPT-3.5. A user can
access the system by texting with a chatbot via a web interface or an API. The output has been optimized to simulate
human interaction with the implementation of human feedback and correction [8]. It is not specifically trained for
code generation. GPT is an abbreviation for "Generative Pre-trained Transformer", which nowadays represents a set
of LLMs developed by OpenAI. Transformer (deep machine learning) models rely on a mechanismmimicking cognitive
attention [9]. The quantity of training data and the number of parameters for the models have increased with each
version [10, 11]. However, official information on GPT-4’s parameter count is not yet available. GPT-3 was never
officially released, but was instead offered via an API to restrict usage of the model[12]. ChatGPT can currently be
used with both GPT-3.5 and GPT-4. However, access to the latter requires payment [13].
GitHub Copilot [3] is an LLM based coding assistant designed to enhance developers’ productivity by enabling them
to write code fast and with little effort. It retrieves data from comments and code to propose complete functions
or individual lines of code. GitHub Copilot is based on a generative AI model developed by GitHub, OpenAI and
Microsoft, trained on publicly available natural language and source code samples, including public repository code
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on GitHub. Unlike ChatGPT, Copilot is a built-in extension to the IDE or editor [14].
AI systems that generate code have been researched earlier and mainly addressed easy tasks, such as generating one
line functions or simple algorithms [15, 16].

1.2 | Problem Formulation
This study addresses three main questions.

1. What is the current capacity of LLM based tools to generate correct and clean code?
2. Is there a significant difference between different LLM tools? As we extend the work documented in [16], this also
includes the question of their improvements over the last year.
3. Is there a significant difference between the programming languages, the code is generated for?

Given the huge interest in and the fast advancement of the assessed tools, the answers to the above questions can
only be a snapshot and are, hence, expected to expire rather sooner than later. Therefore, the foremost problem to
be solved by our work is to provide an evaluation framework—including benchmark problems, metrics, and statistical
tools—to reevaluate the questions in a longitudinal study to see trends and to speculate about future opportunities
of LLM based code generation in a more profound way.

1.3 | Structure
The remainder of the paper is structured as follows: Section 2 introduces the scientific method and experimental
setup for addressing the problem and answering the above questions. Sections 3 and 4 describe details of the
conduction and the results of the experiment, resp. Section 5 discusses the results, answers the research questions,
and lists possible threads to validity of these answers. Section 6 compares related studies with ours. Finally, Section 7
concludes the paper and shows possible directions of future work.

2 | METHOD
To assess the Large Language Models’ code generation performance, we instructed them to generate code in multiple
programming languages. Such code was either an algorithm implementation or a unit test suite for the same. The
resulting generations were then evaluated using various metrics to assess the code correctness and quality answering
the following concrete questions:

1. How well does ChatGPT (GitHub Copilot) provide correct code in Python (Java) from specified instructions?
2. How good is ChatGPT (GitHub Copilot) at generating Python (Java) code of high quality?
3. How well does ChatGPT (GitHub Copilot) provide correct Unit Tests in Python (Java) from specified instructions?
4. How good is ChatGPT (GitHub Copilot) at generating Python (Java) Unit Tests of high quality?
5. Can we observe significant differences between Java and Python?
6. Can we observe significant differences between ChatGPT and GitHub Copilot?
7. Can we observe significant changes compared to the baseline study [16], differences over time?
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Implementing the infrastructure for answering the questions, provided the evaluation framework that we suggest for
future repetitions of the assessment in a longitudinal study.

2.1 | Algorithm Selection
We have chosen twelve algorithms that the LLMs are supposed to generate. Since the study of Hansson and Ell-
réus [16] served as the baseline for our experiments, we selected the same six algorithms. They started with the first
five algorithms described in [17]. In order to not argue about any bias in this selection, we included the missing algo-
rithms of the top ten listed in this article. Following the arguments in [16] for including Binary-to-Decimal conversion
to increase the diversity in the set of algorithms, we added the Egyptian Fractions algorithm. This way we have at
least two different examples for any type of algorithm in our set that includes the following twelve algorithms (type
of algorithm in parentheses):
• Bellman-Ford∗, (graph, optimization algorithm)
• Binary Search∗, (search algorithm)
• Binary To Decimal∗, (number encoding algorithm)
• Breadth First Search (BFS)∗, (search algorithm)
• Depth First Search (DFS)∗∗, (search algorithm)
• Dijkstra∗∗, (graph, optimization algorithm)
• Egyptian Fractions∗∗∗, (number encoding algorithm)
• Floyd-Warshall∗∗, (graph, optimization algorithm)
• Knapsack∗, (optimization algorithm)
• Kruskal∗∗, (graph, optimization algorithm)
• Merge Sort∗, (sorting algorithm)
• Quick Sort∗, (sorting algorithm)
In short, they were selected because they ∗ were contained in [16], ∗∗ fill the gaps of the top ten algorithms in [18],
and ∗∗∗ were needed to have at least two different number encoding algorithms.

2.2 | Formulating Prompts
Both LLMs are instructed with prompts. Depending on the amount and type of information in a prompt, the mod-
els generate different results. We created individual prompts for each combination of programming language and
algorithm.

2.2.1 | Source Code Generation Prompts
Generally, all source code prompts contain the algorithm, the class name, and detailed information describing the class
structure. This includes inner classes, constructors and method declarations with their access modifiers, return values
and parameters. The syntax for the class structure given for Java was sufficient for the AI to identify the intended
programming language. This did not continue to hold for Python. Therefore, we included the programming language
in the prompt. Below, an example of two prompts for Java and Python, respectively, to generate a binary search
algorithm implementation.
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// Implement a non-static class named BinarySearch.

// Implement the public binarySearch(int, int[]) method. The method should return a boolean.

# Implement a non-static class named BinarySearch in python.

# Implement the public binary_search() method.

# The method should use an integer, an integer list as parameters.

# The method should return a boolean.

All prompts used can be found in the appendix.

2.2.2 | Test Case Generation Prompts
For the unit test case generations, three different approaches were used to prompt the LLMs; all yielded promising
results in preliminary tests. Documentation of these tests can be found in the source code repository in Appendix A.
The first approach provides only the structure of the algorithm in text form, including the names of the variables and
the functions, similar to the prompt generating the algorithm source code. The Binary Search unit tests prompt in
Python is provided as an example.
# Implement a python test class called BinarySearchTest using the unittest module.

# The class BinarySearch that is to be tested contains the following methods:

# A public method binary_search(), which takes an integer and an integer list as parameters and

returns a boolean.

# Implement at least 3 different test cases.

The second and third approach provides a source code implementation of the algorithm to be tested, complemented
with a short comment requesting unit tests for the code. For instance, an example comment for the Binary Search
unit test in Python is shown below:
# Implement a test class for the binary search algorithm above using the python unittest module.

# Implement at least 3 different test cases.

The difference between the second and the third approach was the actual source code provided. In the second
approach, the manually written algorithm reference implementation was provided. It was the same implementation
as used for validating the functionality of the respective unit tests for that algorithm.
The supplied code in the third approach was a randomly selected generated implementation for the respective algo-
rithm, taken from the first part of our experiment. The selected implementation, however, needed to pass themanually
written reference unit tests as a prerequisite, i.e., the unit tests used for validating the source code generation for that
algorithm.
All prompts used in the experiments are listed in the Appendix C.

2.3 | Generating Code
We generated code with ChatGPT by using its web interface. ChatGPT is set up as a chatbot and offers multiple
chat windows with different conversations. Since this LLM uses the existing conversation in the current window
as the context for its next generation, a new window was required for each generation. This step ensures that the
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individual code samples remain independent and unbiased. A second way of preventing different code generations
from affecting each other is to disable the “Chat history & training” feature in the Data Controls setting. This will result
in a single chat window that can be cleared, ensuring that prior content will have no effect on new generations.
The previously formulated prompt, see Section 2.2, was entered into the chat input box. ChatGPT then generated
a detailed answer containing an implementation of the desired algorithm. However, it tended to generate a main
function or even an entire main class. Due to the significance of the lines produced in the later analysis, we decided
to remove the extra code to enable comprehensive evaluation of ChatGPT’s ability to generate the desired algorithms
with high quality. During the process of generating test cases, ChatGPT sometimes generated an implementation of
the algorithm itself. Those implementations were also removed.
As a built-in tool for IDEs and editors, GitHub Copilot cannot generate code in the same general way as ChatGPT and
required some extra steps. It uses the contents of the current working directory as context for generation. Therefore,
the independence of each sample required the creation of a fresh Java project and an empty folder containing a Python
file, resp. The code generation files had to be named after the chosen algorithm, written in the appropriate casing
convention. Prior to conducting the generation process, the file had to include the prompt as a comment, followed by
the class body with the cursor positioned within it. In certain IDEs and editors, GitHub Copilot provides the option to
generate up to ten samples simultaneously in a separate tab or window. As this feature significantly streamlined the
generation process; we decided to take advantage of it. Since accepting one of the options would have been taken
into account for future generations in this project, we only copied each generation into a new file in the experiment
workspace.

2.3.1 | Manual Correction of Source Code Generations
GitHub Copilot is, by design, unable to generate lines of code outside the current scope. This led to some missing
import statements. Without adding these manually, the results of the experiment would have been significantly af-
fected. Therefore, we decided to include them using the refactoring functionality of the IDEs. This made the results
of ChatGPT and GitHub Copilot more comparable.
In the event that the code was not able to be compiled or interpreted, we opted to regenerate the sample using the
same method as previously outlined in order to achieve an adequate sample size.

2.3.2 | Manual Correction of Test Case Generations
For both Java and Python test case generation, our analysis required the code to be compilable or, in the case of
Python, interpretable. Consequently, in instances where this was not the case, the generated code had to be manually
corrected. The sole intention of these correctionswas tomake the code syntactically correct with as fewmodifications
as possible. To ensure this, we decided to do the corrections in pair programming.
The only exception in this case was the treatment of uncompleted assertion statements. Since filling these statements
with syntactically but not semantically correct content would have affected the results of later checks of the code, we
decided to remove uncompleted assertion statements.

2.4 | Evaluation Metrics
We defined different code correctness and quality metrics in order to evaluate the generated code, which will be
described below.
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2.4.1 | Code Correctness
To verify that the code generated by the LLMs is correct, we integrated several reference unit tests into our project.
These implementations reuse by-and-large unit tests from third-party sources. To ensure that they are implemented
correctly, we tested them against reference implementations of the algorithms, reused from third-party sources as
well.1 All reference unit tests defined for an algorithm must pass for a generated code to be considered correct.
To capture the correctness of generated unit tests, we tested their code against the above-mentioned reference
implementations of each algorithm. We manually checked that the reference implementation was correct and passed
all reference unit tests. For the generated test code to be considered correct, all its unit tests must pass the reference
source code implementation.

2.4.2 | Code Quality
To measure the quality of the generated code in addition to its correctness, we’ve established guidelines to follow for
high-quality code. For the programming language Java, we’ve adopted quality rules from the referenced bachelor the-
sis by Hansson and Ellréus [16], which have originally been derived from the book Clean Code by Robert C. Martin [19].
The principles used for Java are following:
• The files should not be over 500 lines long.
• A line should not be more than 120 characters long.
• Magic numbers should be hidden behind constants.
• Functions should not be more than 20 lines long.
• Functions should not have more than three arguments.
• There should not be nested loops of a depth of more than one level.
• There should not be more than one statement per line.
• There should not be any inner assignments [16]
For Python, we followed the guidelines outlined in the PEP-8 Style guide to ensure referring to appropriate standards.
We therefore implemented the following quality rules:
• A line should not exceed 79 characters.
• A file should not be longer than 500 lines.
• Magic values should be hidden behind constants.
• Functions and methods should have a maximum of three arguments.
• Nested blocks should not contain more than two blocks.
• There should be only one statement per line.
• Function and method names should not exceed 20 characters. [20]

1We named the third-party (test) sources in our repository for the respective algorithm implementation and we documented the changes made
to them. See for:
Java: https://github.com/tguttzeit/AI-Code-Examination/tree/main/java_app/src/main/java/BookExamples,
Java tests https://github.com/tguttzeit/AI-Code-Examination/tree/main/java_app/src/test/java/BookExamples,
Python https://github.com/tguttzeit/AI-Code-Examination/tree/main/py_app/src/BookExample,
Python tests https://github.com/tguttzeit/AI-Code-Examination/tree/main/py_app/test/BookExample.

https://github.com/tguttzeit/AI-Code-Examination/tree/main/java_app/src/main/java/BookExamples
https://github.com/tguttzeit/AI-Code-Examination/tree/main/java_app/src/test/java/BookExamples
https://github.com/tguttzeit/AI-Code-Examination/tree/main/py_app/src/BookExample
https://github.com/tguttzeit/AI-Code-Examination/tree/main/py_app/test/BookExample
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According to these guidelines, we counted both the number of rule violations and the number of lines generated for
each code sample. Code Quality is determined by the ratio of violations to the number of generated lines.
We only evaluated the code quality of the generated source code, not of the generated unit tests. Because we had to
modify some of the unit test code as described in Section 2.3.2, which would have influenced the results, we decided
that code coverage of the generated tests was a more instructive quality metric on test code.

2.4.3 | Code Coverage
As code quality metric for generating tests, we measured the test coverage of the source code. We analyzed the
coverage of instructions and branches in combination, as described in more detail in Section 2.5.2.

2.4.4 | Modification Rate of Generated Test Code
Besides the correctness and coverage of the generated tests, we evaluated the number of required modifications;
recall the modifications explained in Section 2.3.2. These were quantified using the Levenshtein distance, a metric
for measuring the difference between two strings, here the generated and the manually modified test code (strings).
It is informally defined as the minimum number of edit operations (insertions, deletions or substitutions of single
characters) required to change one string into the other [21]. To calculate the modification rate, we divided the
Levenshtein distance by the number of characters in each code sample, excluding the length of imports and comments.

2.5 | Automated Code Evaluation
2.5.1 | Source Code Evaluation
The generated code was evaluated for the metrics explained above. The evaluation scripts were written in JavaScript,
while the automation of those scripts was implemented as a pipeline in Bash.
The assessment of code quality relied primarily on the use of the linting tools Checkstyle for Java and Pylint for Python.
We configured both tools to detect only those quality defects that violate our defined quality rules. A separate script
counts the lines of code in each file, ignoring any type of comment and imported package, as the number of lines for
each file is also needed in the later analysis. We opted to omit import statements, since importing complete libraries
and packages can be substituted by importing only necessary implementations. This may result in numerous import
lines instead of one, which could have influenced the outcomes.
Code correctnesswas checked using reference unit tests from third-party sources; we refer to the discussion in Section
2.4.1 and the documentation in the BookExample directories on GitHub https://github.com/tguttzeit/AI-Code-
Examination. To guarantee the consistency of the test suite with the generated code, we incorporated the necessary
code structure into the prompt, as previously explained. We utilized the JUnit framework for Java and the unittest.py
package for Python code, resp.

2.5.2 | Test Case Evaluation
Similar to the experiment for the generated source code, the evaluation of the generated test codes was automated
using scripts as much as possible. The pipeline for the test case generation experiment had to be split into two stages,
allowing for the explained manual changes in between.

https://github.com/tguttzeit/AI-Code-Examination
https://github.com/tguttzeit/AI-Code-Examination
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In the first stage after generating the code, a script had to be run to detect any file that could not be compiled or
interpreted. If checking Java files, the script attempts to compile each generated test and copies any file that could
not be compiled into a designated directory. As Python code does not require compilation, we took advantage of
Pylint’s ability to detect any error in the source code prior to execution. Any file discovered to contain errors was
copied to a separate directory, similarly to the approach in Java. Additionally, both scripts produce a JSON file that
enumerates all files requiring correction. These corrections were carried out on the initial document, and the measure
of the changes between the two files was then calculated using Levenshtein distance.
The second stage of the pipeline starts by running the generated unit tests to verify their correctness. As explained
above, we exclusively utilized source code confirmed functional. Therefore, a correctly generated test should not
result in failure. Just as in the source code generation experiment, we used the JUnit framework for Java and the
unittest.py package for Python unit tests.
We incorporated a code coverage analysis to our pipeline as a final check on the quality of the generated tests. For the
Python code, we used the coverage.py package; for the Java code, we used the JaCoCo library for coverage analysis.
In contrast to coverage.py, JaCoCo’s default report provides coverage details for the test class, the source code class,
and its inner classes. For all examined coverage metrics, we calculated the mean of the source code class and its inner
classes, excluding the test class.

2.6 | Statistical Analysis
We used Matlab and Python libraries and the AI-Therapy Statistics tool to analyze the data provided by the pipelines.
To visualize the results in the form of graphs, we developed MATLAB scripts. As the data is separated per algorithm
in the respective JSON files, we first merged the data with the scripts before calculating the frequencies and creating
all graphs provided in Section 3.
For descriptive statistics and to detect significant differences within the data, we used the web-based tool AI-Therapy
Statistics that provides statistical functions for data analysis. Appendix B contains the links to all analyses performed,
including mean, mode, median, and dispersion for all the metrics mentioned above. A normality test was performed
on each dataset before proceeding with hypothesis testing. As the datasets did not follow a normal distribution, we
used non-parametric tests. To compare two groups, e.g., for the programming languages Java and Python or for the
AI models ChatGPT and GitHub Copilot, we used the Mann-Whitney U test2. This test uses mean ranks or medians
to compare the scores of two groups on a variable. To test for significant differences between the three approaches
to generating test cases, we used the Kruskal-Wallis test3 that can compare more than two groups on a variable. As
the Kruskal-Wallis test is an extension of the Mann-Whitney U test, it is also based on mean ranks or medians [22].
For analyzing the differences in correctness and quality over time, i.e., between Spring 2023 (t0) and Fall 2023 (t1), we
first apply theMann-Whitney U test again. However, the samples generated at t0 and t1 are arguably not independent.
Therefore, we analyze pairs of outcome at t0 and t1 for the same algorithm when measuring correctness (quality) of
ChatGPT (Copilot) generated codes, respectively. We calculate the means of the outcomes for each algorithm over
its 50 generations separately at t0 and t1 and assess whether these population means differ using paired difference
tests. As the differences may not be normally distributed, we apply the (non-parametric) Sign test4 and, as this test
may find the differences falsely non-significant, we crosscheck with the (also non-parametric) Wilcoxon signed-rank

2https://en.wikipedia.org/wiki/Mann-Whitney_U_test
3https://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance
4https://en.wikipedia.org/wiki/Sign_test

https://en.wikipedia.org/wiki/Mann-Whitney_U_test
https://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance
https://en.wikipedia.org/wiki/Sign_test
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test5.

3 | CONDUCTING THE EXPERIMENT
According to the methodology described previously, we conducted the experiment. Using the prompts and instruc-
tions described above, we generated code samples with ChatGPT and GitHub Copilot. We generated source code
and unit tests separately for both Java and Python. An equal number of samples was produced for both programming
languages. The precise distribution of the sample size is outlined below.
For the purpose of evaluating source code, we generated 50 code samples for each algorithm using ChatGPT and
GitHub Copilot. As we have selected twelve algorithms, this results in a combined sample size of 600 per AI model
and 1200 code samples overall for each programming language.
To evaluate the test code, we generated 10 samples for each of the three approaches, resulting in 30 unit test samples
for each combination of algorithm and AI model. As a consequence, there are 360 samples per AI model for twelve
algorithms and 720 code samples in total for each programming language.
After generating, we added all code samples to our project and executed the two pipelines described in Section 2.5. To
analyze the provided data, we transferred the resulting JSON files to our analysis repository. The files can be accessed
and downloaded fromour repository linked in appendix A to reproduce our findings. For the analysis, we used the tools
mentioned above, generated graphs, and evaluated differences between the AI models and programming languages,
which will be described in the following.

4 | EVALUATION OF EXAMINATION RESULTS
The experiment was divided into source code generation and test case generation, as previously mentioned. Source
code generation analyzed the generated implementations of an algorithm according to instructions provided in the
prompt, while test case generation generated unit tests for the algorithm.
In the following sections, we explain the results of our research. The results for all the metrics are presented with
graphs that illustrate the relative outcomes for eachmetric. Tables display the pure outcomes for themetrics (absolute
results) and can be found in the appendix, together with the statistical analysis results including the detailed results
of the hypothesis tests.
Further results and diagrams including deeper analysis on the topics stated below can be found in our repository on
GitHub.

4.1 | Source Code Generation
Firstly, we examined the code correctness and quality of the generated source code for both programming languages
and all algorithms.

5https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test

https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
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4.1.1 | Code Correctness
Java

Generating source code for twelve algorithms in Java yields the following outcomes for the code correctness: Both
AI models can generate correct Java code. There is a noticeable difference between the models, with ChatGPT out-
performing GitHub Copilot by about 14 %, see Figure 1. This can be further demonstrated through a hypothesis test.
The Mann-Whitney U test reveals a statistically significant difference between the two at a significance level of 0.01.

F IGURE 1 Code Correctness results for Java F IGURE 2 Code Correctness results for Python

Python

The results for generating source code in Python are as follows: ChatGPT and GitHub Copilot are capable of pro-
ducing valid Python code. There is a clear difference between the AI models again, with ChatGPT performing better
with approximately 17 %, see Figure 2. Comparing the two models using the Mann-Whitney U test also indicates a
statistically significant difference at a significance level of 0.01.

Comparing Java and Python

As previously seen, the results for code correctness in Java and Python are similar. The AI models produce accurate
code in both languages, although the results for Java show a clear advantage over Python. For ChatGPT, there is
roughly a 10 % difference comparing (the correctness of) Java and Python codes and for GitHub Copilot, a 13 %
difference comparing Java and Python.
When analyzing the ChatGPT correctness results of the two programming languages, the Mann-Whitney U test re-
veals a statistically significant difference between Java and Python, based on a significance level of 0.01. Doing this
for the correctness results of GitHub Copilot yields the same outcome. However, the differences between ChatGPT
and GitHub Copilot within the languages are almost identical between the two, around a mean of about 14 % in Java
and 17 % in Python.
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4.1.2 | Code Quality
Java
The quality results of the generated source code indicate that both AI models produce high-quality Java code, accord-
ing to our defined quality guidelines in Section 2.4.2, see Figure 3. GitHub Copilot and ChatGPT do not differ in terms
of code quality, as determined by a Mann-Whitney U test at a significance level of 0.05.
Comparing the number of quality violations detected for each algorithm generation, both AI models mostly produce
implementations free from violations. In general, there is no large difference between ChatGPT and GitHub Copilot
regarding the number of quality violations within generated code. Both achieve a maximum of 4 quality errors per
implementation, see Figure 4 for the distribution of violations in the generated files.

F IGURE 3 Code Quality results for Java F IGURE 4 Comparison of detected quality errors for
Java

Python

F IGURE 5 Code Quality results for Python F IGURE 6 Comparison of detected quality errors for
Python

Looking at the results of generated Python code, we observe a high level of quality for both AI models. The perfor-
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mance of ChatGPT and Copilot is comparable, with both achieving approximately 90 %, see Figure 5. There is a slight
discrepancy of about 2 %, with GitHub Copilot reaching the higher score. This difference can also be determined from
the results of the Mann-Whitney U test. There is a statistically significant difference in code quality between the AI
models at a significance level of 0.05.
Regarding the number of quality violations, we observe the distribution shown in Figure 6. It is difficult to identify a
parametric distribution for the quality errors produced by GitHub Copilot. Both models generate about 50 % of their
Python codes free from errors or only containing one, but there are also a noticeable number of files with several
violations. For ChatGPT, the maximum number of quality errors generated per implementation is 11, while it is 9 for
Copilot.
Comparing Java and Python
ChatGPT and GitHub Copilot generate high-quality code in both programming languages. As already seen in code
correctness, Java code has higher code quality overall. The scores for Java are about 10%higher in ChatGPT and about
8 % in Copilot. Testing the differences between the languages separately for each model, establishes a statistically
significant difference for both of them at a significance level of 0.01. Additionally, the generated implementations in
Python result in more quality errors per generation compared to the Java code.

4.2 | Test Case Generation
After generating implementations for different algorithms, we examined the generation of test cases for given instruc-
tions or given implementations of the algorithms.
The following sections compare three approaches for generating test cases: The first strategy, called PromptOnly,
generates unit tests without any implementation of the algorithm given in the prompt. The second approach, referred
to as BookExampleCode, generates test cases for a given correct reference implementation of the algorithm. The
last approach, named AIGenerated, is very close to the second approach, but with the modification that it uses a
verified implementation of the algorithm generated by the AI model itself. The three approaches have been detailed
in Section 2.2.2.

4.2.1 | Test Code Correctness
Java
The outcomes regarding the correctness of generated Java test code are as follows: ChatGPT and GitHub Copilot
produce test code at an intermediate level, but hardly do not exceed 50 % correctness in any approach, with Copi-
lot performing better than ChatGPT, see Figures 7. The Mann-Whitney U test indicates that there is a statistically
significant difference between the two AI models at a 0.01 significance level.
Test case generation appears to work better with an implementation provided in the prompt, as shown by the fact
that the PromptOnly approach produces the lowest results. However, according to the Kruskal-Wallis test executed
for ChatGPT and Copilot individually, the data demonstrates no statistically remarkable differences at a significance
level of 0.05.
Python
For Python, Copilot appears to perform better than ChatGPT, but not well either, reaching 45% correctness at its peak,
see Figures 8. ChatGPT on the other hand, achieves a correctness of only about 30% across the three approaches. The



14 Beer, Feix, Guttzeit, Muras, Müller, Rauscher, Schäffler, Löwe

F IGURE 7 Test Code Correctness results for Java F IGURE 8 Test Code Correctness results for Python

statistical analysis indicates that the difference between the twomodels is significant according to theMann-Whitney
U test at a significance level of 0.01.
The performance across the approaches differs. While ChatGPT attains its highest correctness score using theAIGener-
ated approach, it is the lowest for Copilot. GitHub Copilot performs best with the PromptOnly approach. Regarding the
performance for each AI Model, we cannot conclude any statistically significant differences between the approaches
according to Kruskal-Wallis tests performed for ChatGPT and GitHub Copilot.

Comparing Java and Python
Overall, the correctness results for the generated test cases are limited in both languages. The models produce a
higher number of incorrect samples than correct ones. As previously observed, correct test code generation is more
effective in Java compared to Python. The difference between the programming languages is statistically significant,
as confirmed by the Mann-Whitney U test at a significance level of 0.01. Concerning the variations between the AI
models across the languages, Copilot performs better for both Java and Python. In Java, the models achieve compa-
rable outcomes for all three approaches, while in Python, the results are diverse.

4.2.2 | Coverage
To assess the quality of test code, we use test coverage metrics, as described in Section 2.5.2.

Java
The evaluation of the coverage outcomes for generated Java unit tests indicate that across all approaches the coverage
hardly reaches 60 %, see Figure 9. Although the results appear similar, using a reference algorithm implementation
in the prompt (BookExampleCode) produces the best results for generating Java test cases with ChatGPT and GitHub
Copilot. There are minor differences between the approaches, with the results for Copilot showing slightly larger
differences than those for ChatGPT. This is verified by a Kruskal-Wallis test performed separately for the AI models.
The results reveal a statistically significant difference in the three approaches for Copilot on a significance level of
0.05, but none for ChatGPT.
Comparing the two models shows small variations for the PromptOnly and AIGenerated approaches. The Mann-
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Whitney U test confirms that the disparity between ChatGPT and GitHub Copilot is statistically significant at a signif-
icance level of 0.01.

F IGURE 9 Test Coverage results for Java F IGURE 10 Test Coverage results for Python

Python
The results of the test coverage for Python unit tests generated are displayed in Figure 10. Best results are achieved
for the approaches where the correct source code to be tested is included in the prompt. In contrast, the PromptOnly
strategy performs much worse, with a gap of more than 20 %. Both AI models show a noticeable difference, but it
is more substantial for ChatGPT-generated code. The Kruskal-Wallis test shows that there is a statistically significant
difference in the approaches for both AI models, at a significance level of 0.01.
Overall, ChatGPT outperforms Copilot, achieving higher results. Nevertheless, according to the Mann-Whitney U
test, the difference is not statistically significant.
Comparing Java and Python
When examining differences between programming languages, Python code attains significantly better coverage re-
sults than Java. The maximum achieved coverage for Python is 98 %, while Java does not even reach 60 % coverage.
The statistical significance of this discrepancy is demonstrated by the Mann-Whitney U test at a 0.01 significance
level.
There is a clear difference between the prompting approaches in Python; in Java the prompting approach is less crucial.
The approach BookExampleCode yields the best results with only a slight advantage in Java, while in Python there is a
noticeable gap between PromptOnly and the other two approaches.

4.2.3 | Modification Rate
As discussed in Section 2.3.2, we needed to manually modify some unit test cases in order to compile these files and
receive a report on the coverage. Evaluating these required modifications demonstrates that only minor adjustments
to the code samples were needed. This result applies to both Java and Python, see Figures 11 and 12.
In general, we made very few modifications. Comparing ChatGPT and GitHub Copilot, there is hardly any noticeable
difference between them for the two languages. However, this difference between ChatGPT and Copilot is still sta-
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tistically significant at a significance level of 0.01, as demonstrated by a Mann-Whitney U test performed separately
for Java and Python.
No difference between the two programming languages is recognizable, a fact which is further supported by a Mann
Whitney U test based on a significance level of 0.05.

F IGURE 11 Modification rate results for Java F IGURE 12 Modification rate results for Python

4.3 | Differences Over Time
We investigate differences in the outcomes over time by rerunning the experiment of the baseline study [16] and
generating code for the identical six Java algorithms half a year later. Our objective was to identify noticeable and
significant changes in the correctness and quality of the code.
The difference over time in ChatGPT’s performance is substantial, while Copilot’s correctness is almost similar. Com-
paring our results with theirs for both AI models in the six algorithms of the baseline study using the Mann-Whitney
U test, we identify a significant difference in code correctness for ChatGPT at the 0.05 significance level, while the
difference is not significant for GitHub Copilot.
We also identify variations in code quality. The baseline study attained a 98.52 % code quality using ChatGPT and
94.07 % with GitHub Copilot. While ChatGPT achieved a similar performance with a 98 % rate of quality compliant
generated lines in our study, GitHub Copilot improved its performance by 4 % to 98.05 %. The statistical analysis
confirms a significant difference in the code quality of GitHub Copilot between our results and the baseline study at
the 0.05 level of significance. However, ChatGPT did not show any significant improvement. To summarize these tests,
there is an improvement of AI-generated code over time. Specifically, ChatGPT excels in ensuring code correctness,
while GitHub Copilot enhanced its code quality to match that of ChatGPT.
Figures 13 and 14 show the correctness and quality differences over time, i.e., the differences of the means of 50
generations for each algorithm generated at t0 and t1, respectively. Here, only quality score differences for Copilot
are noticeably larger than zero, indicating a noticeable improvement from t0 to t1: on average, the number of quality
issues has dropped by ≈ 1. However, according to the Sign test this difference is not significant at the 0.05 significance
level. In contrast to that, the less conservative Wilcoxon signed-rank test does indicate a significant improvement at
this level. In the three other cases (correctness changes for both LLMs and quality changes for ChatGPT), both tests
fail in rejecting the null hypothesis that the (barely noticeable) differences are just random at the 0.05 significance
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F IGURE 13 Correctness changes between t0 and t1 F IGURE 14 Quality changes between t0 and t1

level. Mind the outlier algorithm in the correctness measurement of ChatGPT indicating a 70% improvement from
t0 to t1. This outlier was disregarded in the paired difference tests, which explains the conclusion differing from the
Mann-Whitney U test results.

5 | DISCUSSION
5.1 | Analysis Results
We can summarize that ChatGPT does very well in generating correct code. ChatGPT achieved 89.33 % for Java code
and 79.17 % for Python code in terms of code correctness. On the other hand, GitHub Copilot does also manage to
generate correct code. It reached 75.50 % for Java code and 62.50 % for Python code in terms of code correctness.
These results answer the first research question: 1. How well does ChatGPT (GitHub Copilot) provide correct code in
Python (Java) from specified instructions? However, there are threads to validity, as discussed in Section 5.2.
The results from ChatGPT in code quality were also good, with 98.09 % for Java code and 88.20 % for Python code.
In contrast to the code correctness of code generated by GitHub Copilot, the code quality of the GitHub Copilot
generated code showed better results. It achieved 98.13 % for Java code and 90.15 % for Python code. These results
answer the second research question: 2. How good is ChatGPT (GitHub Copilot) at generating Python (Java) code of high
quality?

For test case generation, ChatGPT achieves only intermediate results in code correctness. The outcomeswere 37.50%
on average for the three approaches for Java code and 28.61 % on average for the three approaches for Python code.
GitHub Copilot performed slightly better and achieved 49.72 % on average for the three approaches for Java code
and 39.17 % on average for the three approaches for Python code in terms of code correctness. Only little manual
work, about 1 %, was needed to correct the generated test cases. This answers the third research questions 3. How
well does ChatGPT (GitHub Copilot) provide correct Unit Tests in Python (Java) from specified instructions?

Regarding test code quality, ChatGPT shows intermediate coverage in Java and good coverage in Python, i.e., 58.79 %
on average for the three approaches for Java code and 85.94 % on average for the three approaches for Python code.
GitHub Copilot similarly in coverage; the code coverage was 57.18 % on average for the three approaches for Java
code and 82.03 % on average for the three approaches for Python code. This answers the third research questions 4.
How good is ChatGPT (GitHub Copilot) at generating Python (Java) Unit Tests of high quality?
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Comparing Java and Python shows, that both AI models achieved better results in Java than in Python with a statisti-
cally significant difference based on a significance level of 0.01 in terms of code correctness and quality. For test case
generation, Java also performs better in test correctness. However, Python shows better results in test coverage, with
reaching nearly total coverage. There is a statistically significant difference in the test correctness and coverage based
on a significance level of 0.01 between the languages Java and Python. These statistically significant differences were
determined using the Mann-Whitney U test. This answers the fifth research question 5. Can we observe significant
differences between Java and Python?
All following statistically significant differences were determined using the Mann-Whitney U test. There is a statisti-
cally significant difference between ChatGPT and GitHub Copilot:
• in the code correctness of generated Java and Python codes, resp. (p < 0.01),
• in the code quality of generated Java and Python codes, resp. (p < 0.05),
• in the test code correctness of generated Java and Python codes, resp. (p < 0.01),
• in the test code coverage of generated Java code (p < 0.01).
Given these differences in the performance between the two AI models, ChatGPT seems to be the choice for generat-
ing correct, high-quality code and test cases. On the other hand, GitHub Copilot is not far away from the performance
of ChatGPT, noting also the convenience to use this tool directly in the developer’s IDE. This provides an answer to
the research question 6. Can we observe significant differences between ChatGPT and GitHub Copilot?
There is a improvement of LLM-generated code over time. ChatGPT excels in code correctness and GitHub Copilot in
code quality. The former is supported only by the Mann-Whitney U test (assuming independent samples), the latter
even by the Wilcoxon signed-rank test (assuming dependent samples). This answers the research question 7. Can we
observe significant changes compared to the baseline study [16], differences over time?

5.2 | Threats to Validity
In this section, we discuss internal and external threats to the validity of our study. Internal validity refers to the
degree of confidence that the causal relationships being tested in this study are trustworthy and not influenced by
other factors or variables. External validity refers to the extent to which results from this study can be applied and
generalized to other situations, groups, or events.

5.2.1 | Internal Validity
Due to the non-deterministic nature of the LLMs, the results of one and the same prompt are not repeatable to
100 %. We mitigate this problem by generating several implementations resetting the session context in between but
differences remain. Although the differences appear to be minor, an analysis of the statistical significance of these
differences would be one of the possibilities to extend this study, as explained in Section 7.
Another threat to the validity of the above results was already observed during the course of our experiment. We run
the generations in parallel using devices with different specifications and operating systems. Due to the nondetermin-
ism in some assessment tools and even in some of the generated algorithms, results were not the same for different
users and machines, even though the data generated was the same. Even after using the same versions of each tool
involved in the examination process, the results on different devices still differed from time to time. We did our best to
find the reason for these differences and correct them where possible, but we were unable to correct them all. Again
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the remaining differences are small, but an analysis of statistical significance of these differences would be a possible
extension of this study, see Section 7.
Moreover, the correction of unusable test case generations required human intervention. This might lead to different
approaches to adapting the code and therefore different results. The potentiality of executing the experiment differ-
ently from the intention of the instructions is also a threat to the equivalence of our results and to future repetitions
of our experiment.
Finally, the benchmark code was derived from standard algorithms; similar implementations might have leaked into
the training set of the LLMs, cf. the discussion in Section 6.
External Validity Since GitHub Copilot receives continuous updates without a specific version available for selection,
the possibility of future variations in results is more likely than not. This is due to the ongoing development of the
AI model, indicating that outcomes from GitHub Copilot’s future generations may be superior or inferior to the ones
obtained in our experiment. A similar issue applies to ChatGPT. It is to be expected that the GPT LLM will undergo
further improvements, and therefore, the possibility of new versions of the model generating better or worse results.
OpenAI might even choose to eliminate GPT-3.5 as a public version, making our results harder to repeat.
Moreover, the study centered on Java and Python, both of which rank among the top ten most frequently used
programming languages [23]. Nonetheless, it is possible that these two languages do not provide a fair representation
of the vast number of programming languages that exist.
Likewise, the algorithms selected primarily by following the list of “25 algorithms every programmer should know”
may be rather simple compared to other algorithms, which may have had a positive effect on the results of the study.
The study should be extended with more and less popular algorithm to generalize the results.
Also, we chose English as the language of the prompts, since we expected the most promising results there. The use
of other languages may result in different results, as well.
We created the prompts at our own discretion and not according to a specific, fixed pattern nor a with a maximum
length. Although we aimed for short and concise prompts, remaining differences may have influenced the results:
more precisely specified prompts may produce better results than simpler and shorter prompts.
Finally, the benchmark code was derived from standard algorithms, an approach that has been criticized for lacking
practical relevance, cf. Section 6.

6 | RELATED WORK
E. Hansson and O. Ellréus evaluated the code generation abilities of GitHub Copilot and ChatGPT in terms of code
correctness and code quality in early 2023 [16]. On a subset of our algorithms, their study shows that both ChatGPT
andGitHubCopilot are capable of producing Java code given specific instructions. ChatGPThad attained a correctness
rate of 87 %, while GitHub Copilot achieved a rate of 89 %. Half a year later and with an extended set of algorithms,
we showed that ChatGPT increased the correctness rate to 89 %, while GitHub Copilot’s correctness rate dropped
to 75.5 %. Furthermore, their study could not show a significant difference in code correctness between the two
tools, while our study did. Moreover, in early 2023 ChatGPT managed to produce 98.52 % of its generated lines
without quality rule violations, whereas GitHub Copilot has produced only 94.07 % of its generated lines without any
quality rule violations. In terms of code quality, their analysis shows that ChatGPT is statistically significantly better
than GitHub Copilot. In our study, both tools generated code with more than 98 % of its lines without quality rule
violations; a significant difference of the tools couldn’t be observed any longer.
In addition to the study of Hansson and Ellréus [16], ours incorporated six additional algorithms in Java. Moreover,
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we assessed the code correctness and code quality for the corresponding algorithms in Python as well. Furthermore,
we investigated the ability of both tools to generate unit tests in the mentioned programming languages.
Chen et al. conducted a study assessing the functional correctness of code produced by different LLMs [15]. The
study examined GPT-3/-J’s code generation abilities, with particular emphasis on the Codex model, which is fine-
tuned on publicly available code from GitHub. It was found that Codex is capable of solving 28.8 % of problems in the
HumanEval dataset, whereas GPT3 solves none and GPT-J solves 11.4 %. The research concentrated on generating
isolated Python functions from Docstrings (documentation string literals after the function definition).
There exists also a variety of alternative Python benchmarks including HumanEval [15], MBPP [24], APPS [25], and
DS-1000 [26]. They are larger than our benchmark ranging from a few hundred instances in HumanEval to several
thousand instances in APPS andMBPP. Yadav et al. showed the benchmarks bias towards a limited set of programming
concepts, neglecting most of the other concepts entirely, and suggests PythonSaga [27]. All these benchmarks are
limited to Python. Therefore, Zheng et al. introduced HumanEval-X, a benchmark for evaluating multilingual models
in Python, C++, Java, JavaScript, and Go [28]. For each problem defined in Humelval only for Python, they manually
rewrote its prompt, canonical solution, and test cases in the other four languages. Dou et al. criticize that benchmarks
commonly used are constructed from programming questions, hence, disconnected from real-world programming,
or derived from real-world code repositories and, hence, contaminated as also used for pre-training the LLMs [29].
Riddell et al. even quantifies this contamination [30]. We developed our own benchmark from programming questions
admitting that relevance and contamination are hard to assess; both are threads to validity.
Using different Python benchmarks, Yeo et al. suggest a framework for the evaluation of LLM-generated code includ-
ing metrics (pass@n) for the fine grained assessment of the results [31]. Zheng et al. evaluated their model CodeGeeX
using HumanEval-X and , the (pass@n) metric for Python, C++, Java, JavaScript, and Go [28]. However, they do not
suggest the generation and evaluation of test codes and their assessment as the present paper does. Repeating our
tests with (the Python and Java problems of) HumanEval-X is matter of future work.
Evaluating the ability of LLMs to generate correct and high-quality code was also investigated by many other re-
searchers. Here some examples: Niu et al. evaluated the code efficiency [32] using the framework suggested in [31].
Yetistiren et al. evaluated code generation of GitHub Copilot in terms of correctness, validity, and efficiency [33]. They
discovered that GitHub Copilot could create 28.7 % fully correct code for problems in the HumanEval dataset. For
this dataset, 51.2 % of generated code was partially correct, whereas 20.1 % was incorrect.
Wang et al. found inadequate quality characteristics considered in the existing studies about code generated by LLMs,
if quality was considered at all [34]. We evaluated and compared the code quality of ChatGPT and GitHub Copilot
with well-established Clean Code [19] quality characteristics.
Comparably few researchers evaluated the ability of LLMs to generate correct and high-quality test code: Li et al.
and Chen et al. show that the pass@n metric can be improved by generating tests using LLMs in their systems Al-
phaCode [35] and CodeT [36], resp. Lahiri, Fakhoury et al. evaluated the development efficiency, correctness, and
cognitive load of (test) code in their test-driven development workflow [37, 38]. None of these papers on test code
generation evaluated the coverage of the generated tests.
Pan et al. addressed a related problem: they studied the performance of converting source code from one program-
ming language to another across pairs of different languages, including C, C++, Go, Java, and Python [39]. Their
prompts included of the source code implementation of a method, not only a description of the method as in our case,
but they propose a prompt-crafting approach to provide additional context for LLMs. In addition to the distinction of
syntactical and functional errors, as we did in our study, they also identify root causes for translation bugs. We aimed
to evaluate the coding capabilities of ChatGPT and GitHub Copilot using a prompt text as a comprehensive comment,
rather than using Docstrings. We also intended to insert code snippets within the introductory section to assess tool
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performance in this scenario.

7 | CONCLUSION AND FUTURE WORK
The study indicates that LLMs can generate algorithms and test codes for both Java and Python. Algorithm generation
works, however, way better than test case generation. It can also be stated that (currently) ChatGPT outperforms
GitHub Copilot in generating correct code, although both yield code of excellent quality. When producing test cases,
both AImodels produce similar results in terms of test coverage, with ChatGPT performing better on some (prompting)
approaches. However, in terms of the correctness of generated test cases, GitHub Copilot produces more correct
outcomes than ChatGPT. Regardless of the LLM, the code generated in Java achieved significantly better results
overall than the code generated for Python, with test coverage results the only exception.
However, given the shortfall of 10 % left to attain faultless code in rather well-known standard algorithms, it is rea-
sonable to assume that the era of artificial intelligence superseding human software developers is yet to come. Nev-
ertheless, both ChatGPT and GitHub Copilot prove to be useful assisting tools in developing software, enabling the
developers to focus on more complex tasks in their job.
Further research is required to provide a more elaborate conclusion on the methods and opportunities available for
supporting and automating software development, as discussed in Section 5. This future work involves categorizing
the AI tasks according to their complexity, which may reveal potential effects on correctness and quality of the gen-
erated (test) codes. Since the research on the code generation capabilities of LLMs is an ongoing topic, one could
compare the results of this and other studies to try to identify a trend in code correctness and code quality over time.
Another way to increase the variety of the code generation tasks, is to assess the capabilities of LLMs to refactor or
debug already written code. Finally, it is interesting to statistically analyze the influence of non-determinism in (test)
code generation, in the generated algorithms, and experimental environment on the study results.
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B | STATISTICAL ANALYSIS
This section contains additional information that outlines our study’s findings. Frequency tables are used to provide
precise data on the quality and correctness of the produced Python and Java code. Furthermore, all results from
hypothesis tests and statistical analysis are presented in detail.

B.1 | Frequency Tables for Correctness
The tables below display the count of generations per AI model and in case of test generation per approach, catego-
rized as Correct or Incorrect, based on the unit test outcomes for a particular generation.

Source Code Generation

Correct Incorrect Total generations
ChatGPT 536 64 600
GitHub Copilot 453 147 600

TABLE 1 Frequency table of Code Correctness
results for Java

Correct Incorrect Total generations
ChatGPT 475 125 600
GitHub Copilot 375 225 600

TABLE 2 Frequency table of Code Correctness
results for Python

Test Case Generation

Approach Correct Incorrect Total generations
ChatGPT AIGenerated 50 70 120

BookExampleCode 44 76 120
PromptOnly 41 79 120

GitHub Copilot AIGenerated 64 56 120
BookExampleCode 61 59 120
PromptOnly 54 66 120

TABLE 3 Frequency table of Test Correctness results for Java

Approach Correct Incorrect Total generations
ChatGPT AIGenerated 40 80 120

BookExampleCode 30 90 120
PromptOnly 33 87 120

GitHub Copilot AIGenerated 39 81 120
BookExampleCode 48 72 120
PromptOnly 54 66 120

TABLE 4 Frequency table of Test Correctness results for Python
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B.2 | Frequency Tables for Code Quality
The following tables show the number of lines of code generated per AI model, classified into lines with no errors and
lines with errors. The number of lines is calculated across all twelve algorithms. Additionally, they indicate the quantity
of quality rule violations for each AI model, according to the quality rules defined in section 2.4.2.

Source Code Generation in Java

Lines without errors Lines with errors Total number of Lines
ChatGPT 20 263 394 20 657
GitHub Copilot 19 186 366 19 552

TABLE 5 Frequency table of Code Quality results for Java

Number of quality rule violations 0 1 2 3 4
ChatGPT 359 139 57 39 6
GitHub Copilot 343 170 66 20 1

TABLE 6 Frequency table of Quality rule violations for Java

Source Code Generation in Python

Lines without errors Lines with errors Total number of Lines
ChatGPT 10 700 1 432 12 132
GitHub Copilot 10 768 1 177 11 945

TABLE 7 Frequency table of Code Quality results for Python

Number of quality rule violations 0 1 2 3 4 5 6 7 8 9 10 11
ChatGPT 127 142 73 114 41 35 34 22 5 6 0 1
GitHub Copilot 158 148 61 94 89 36 11 2 0 1

TABLE 8 Frequency table of Quality rule violations for Python

B.3 | Hypothesis Tests
As previously mentioned, several hypothesis tests were performed to identify statistically significant differences in AI
tools, languages and test case generation approaches. The following section displays the precise results of the tests
alongside corresponding links to the AI-Therapy website, where they were conducted. The Mann-Whitney U test
was employed to compare two groups, while the Kruskal Wallis test was used to compare the three test generation
approaches. Both tests aim to evaluate group distributions by testing the null hypothesis, which implies no differences
between them. The alternative hypothesis suggests that such differences do exist.
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B.3.1 | Source Code Generation
Code Correctness

The following tables show the results of the hypothesis tests used to examine the differences in the code correctness
between ChatGPT and GitHub Copilot. These are presented separately for Java and Python:

Mann-Whitney U Test Java
U 155100.000
z-score -6.291
p < 0.001
effect size r -0.182

TABLE 9 Mann-Whitney U Test comparing code
correctness results of the AI models for Java

Mann-Whitney U Test Python
U 150000.000
z-score -6.348
p < 0.001
effect size r -0.183

TABLE 10 Mann-Whitney U Test comparing code
correctness results of the AI models for Python

The following tables present hypothesis test outcomes evaluating differences between the programming languages
Java and Python, for both ChatGPT and GitHub Copilot individually:

Mann-Whitney U Test ChatGPT
U 161700.000
z-score -4.832
p < 0.001
effect size r -0.139

TABLE 11 Mann-Whitney U Test comparing code
correctness results of Java and Python for ChatGPT

Mann-Whitney U Test GitHub Copilot
U 156600.000
z-score -4.867
p < 0.001
effect size r -0.140

TABLE 12 Mann-Whitney U Test comparing code
correctness results of Java and Python for GitHub

Copilot

Code Quality

The following tables show the results of the hypothesis tests used to examine the differences in the code quality
between ChatGPT and GitHub Copilot. These are presented separately for Java and Python:

Mann-Whitney U Test Java
U 178750.500
z-score -0.235
p 0.814
effect size r -0.007

TABLE 13 Mann-Whitney U Test comparing Code
Quality results of the AI models for Java

Mann-Whitney U Test Python
U 164198.000
z-score -2.681
p 0.007
effect size r -0.077

TABLE 14 Mann-Whitney U Test comparing Code
Quality results of the AI models for Python

The following tables present hypothesis test outcomes evaluating differences between the programming languages
Java and Python, for both ChatGPT and GitHub Copilot individually:

https://www.ai-therapy.com/psychology-statistics/results/20231111102137758
https://www.ai-therapy.com/psychology-statistics/results/20231111102320935
https://www.ai-therapy.com/psychology-statistics/results/20231111102532634
https://www.ai-therapy.com/psychology-statistics/results/20230922143540378
https://www.ai-therapy.com/psychology-statistics/results/20230922130117040
https://www.ai-therapy.com/psychology-statistics/results/20231111102713209
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Mann-Whitney U Test ChatGPT
U 86152.000
z-score -16.325
p < 0.001
effect size r -0.471

TABLE 15 Mann-Whitney U Test comparing Code
Quality results of Java and Python for ChatGPT

Mann-Whitney U Test GitHub Copilot
U 97531.500
z-score -14.433
p < 0.001
effect size r -0.417

TABLE 16 Mann-Whitney U Test comparing Code
Quality results of Java and Python for GitHub Copilot

B.3.2 | Test Case Generation

Code Correctness

The following tables show the hypothesis tests results evaluating the differences between the three approaches for
the programming language Java. These are presented separately for ChatGPT and GitHub Copilot:

Kruskal-Wallis Test Java - ChatGPT
H(2) 1.489
p 0.475

TABLE 17 Kruskal-Wallis Test comparing code
correctness results of the three approaches for Java

using ChatGPT

Kruskal-Wallis Test Java - GitHub Copilot
H(2) 1.751
p 0.417

TABLE 18 Kruskal-Wallis Test comparing code
correctness results of the three approaches for Java

using GitHub Copilot

The following tables show the hypothesis tests results evaluating the differences between the three approaches for
the programming language Python. These are presented separately for ChatGPT and GitHub Copilot:

Kruskal-Wallis Test Python - ChatGPT
H(2) 2.143
p 0.343

TABLE 19 Kruskal-Wallis Test comparing code
correctness results of the three approaches for Python

using ChatGPT

Kruskal-Wallis Test Python - GitHub Copilot
H(2) 3.976
p 0.137

TABLE 20 Kruskal-Wallis Test comparing code
correctness results of the three approaches for Python

using GitHub Copilot

The presented tables display the outcomes of hypothesis testing that investigated the variation in code correctness
between ChatGPT and GitHub Copilot, combining all three approaches. These are presented separately for Java and
Python:

https://www.ai-therapy.com/psychology-statistics/results/20230922141134585
https://www.ai-therapy.com/psychology-statistics/results/20230922141326709
https://www.ai-therapy.com/psychology-statistics/results/20231111103410983
https://www.ai-therapy.com/psychology-statistics/results/20230926183159450
https://www.ai-therapy.com/psychology-statistics/results/20231111103705019
https://www.ai-therapy.com/psychology-statistics/results/20230926203125779
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Mann-Whitney U Test Java
U 56880.000
z-score -3.304
p < 0.001
effect size r -0.123

TABLE 21 Mann-Whitney U Test comparing code
correctness results of the AI models for Java

Mann-Whitney U Test Python
U 57960.000
z-score -2.990
p 0.003
effect size r -0.111

TABLE 22 Mann-Whitney U Test comparing code
correctness results of the AI models for Python

The following tables present hypothesis test outcomes evaluating differences between the programming languagesJava and Python, combined for ChatGPT and GitHub Copilot:
Mann-Whitney U Test Correctness
U 234000.000
z-score -3.785
p < 0.001
effect size r -0.100

TABLE 23 Mann-Whitney U Test comparing code correctness results of Java and Python for both AI models

Coverage
The following tables show the hypothesis tests results, evaluating the differences in the coverage between the three
approaches for the programming language Java. These are presented separately for ChatGPT and GitHub Copilot:

Kruskal-Wallis Test Java - ChatGPT
H(2) 1.799
p 0.407

TABLE 24 Kruskal-Wallis Test comparing coverage
results of the three approaches for Java using ChatGPT

Kruskal-Wallis Test Java - GitHub Copilot
H(2) 6.769
p 0.034

TABLE 25 Kruskal-Wallis Test comparing coverage
results of the three approaches for Java using GitHub

Copilot

The following tables show the hypothesis tests results evaluating the differences between the three approaches for
the programming language Python. These are presented separately for ChatGPT and GitHub Copilot:

Kruskal-Wallis Test Python - ChatGPT
H(2) 39.905
p < 0.001

TABLE 26 Kruskal-Wallis Test comparing coverage
results of the three approaches for Python using

ChatGPT

Kruskal-Wallis Test Python - GitHub Copilot
H(2) 23.861
p < 0.001

TABLE 27 Kruskal-Wallis Test comparing coverage
results of the three approaches for Python using GitHub

Copilot

The presented tables display the outcomes of hypothesis testing that investigated the variation in coverage between
ChatGPT and GitHub Copilot, combining all three approaches. These are presented separately for Java and Python:

https://www.ai-therapy.com/psychology-statistics/results/20230926200044073
https://www.ai-therapy.com/psychology-statistics/results/20230926204556824
https://www.ai-therapy.com/psychology-statistics/results/20230926210215349
https://www.ai-therapy.com/psychology-statistics/results/20231111104059593
https://www.ai-therapy.com/psychology-statistics/results/20231111104309487
https://www.ai-therapy.com/psychology-statistics/results/20231111104546431
https://www.ai-therapy.com/psychology-statistics/results/20230926215447516
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Mann-Whitney U Test Java
U 57456.000
z-score -2.635
p 0.008
effect size r -0.098

TABLE 28 Mann-Whitney U Test comparing
coverage results of the AI models for Java

Mann-Whitney U Test Python
U 62699.000
z-score -0.857
p 0.391
effect size r -0.032

TABLE 29 Mann-Whitney U Test comparing
coverage results of the AI models for Python

The following tables present hypothesis test outcomes evaluating differences between the programming languagesJava and Python, combined for ChatGPT and GitHub Copilot:
Mann-Whitney U Test Coverage
U 85834.500
z-score -22.297
p < 0.001
effect size r -0.588

TABLE 30 Mann-Whitney U Test comparing coverage results of Java and Python for both AI models

Modification Rate

The presented tables display the outcomes of hypothesis testing that investigated the differences in the Levenshtein
Distance between ChatGPT and GitHub Copilot, combining all three approaches. These are presented separately for
Java and Python:

Mann-Whitney U Test Java
U 40589.500
z-score -11.212
p < 0.001
effect size r -0.418

TABLE 31 Mann-Whitney U Test comparing
Levenshtein Distance results of the AI models for Java

Mann-Whitney U Test Python
U 45498.500
z-score -8.974
p < 0.001
effect size r -0.334

TABLE 32 Mann-Whitney U Test comparing
Levenshtein Distance results of the AI models for Python

The following tables present hypothesis test outcomes evaluating differences between the programming languagesJava and Python, combined for ChatGPT and GitHub Copilot:
Mann-Whitney U Test Levenshtein Distance
U 259117.500
z-score -0.014
p 0.989
effect size r -0.000

TABLE 33 Mann-Whitney U Test comparing Levenshtein Distance results of Java and Python for both AI models

https://www.ai-therapy.com/psychology-statistics/results/20230926214810412
https://www.ai-therapy.com/psychology-statistics/results/20231111104802326
https://www.ai-therapy.com/psychology-statistics/results/20230926215858966
https://www.ai-therapy.com/psychology-statistics/results/20230926211700625
https://www.ai-therapy.com/psychology-statistics/results/20230926212806271
https://www.ai-therapy.com/psychology-statistics/results/20231111105046468
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B.3.3 | Comparison with baseline study

The following tables show the results of the hypothesis tests used to examine the differences in the code correctness
between our results and the ones of the baseline study using the same six Java algorithms. These are presented
separately for ChatGPT and GitHub Copilot:

Mann-Whitney U Test ChatGPT
U 39600.000
z-score -5.887
p < 0.001
effect size r -0.240

TABLE 34 Mann-Whitney U Test comparing code
correctness results of the baseline study and current

outcomes for ChatGPT

Mann-Whitney U Test GitHub Copilot
U 44700.000
z-score -0.257
p 0.797
effect size r -0.011

TABLE 35 Mann-Whitney U Test comparing code
correctness results of the baseline study and current

outcomes for GitHub Copilot

The following tables present hypothesis test outcomes evaluating differences between the results of our study and
those of the baseline research, for both ChatGPT and GitHub Copilot individually:

Mann-Whitney U Test ChatGPT
U 41966.000
z-score -1.947
p 0.052
effect size r -0.079

TABLE 36 Mann-Whitney U Test comparing code
quality results of the baseline study and current

outcomes for ChatGPT

Mann-Whitney U Test GitHub Copilot
U 41025.000
z-score -2.243
p 0.025
effect size r -0.092

TABLE 37 Mann-Whitney U Test comparing code
quality results of the baseline study and current

outcomes for GitHub Copilot

B.4 | Analysis with AI-Therapy

The links to the AI-Therapy website, where the statistical analysis was conducted, are provided below. Each metric for
both ChatGPT and GitHub Copilot was subjected to mean, mode, median, dispersion, and normality tests separately.

https://www.ai-therapy.com/psychology-statistics/results/20230916113200481
https://www.ai-therapy.com/psychology-statistics/results/20231111215121702
https://www.ai-therapy.com/psychology-statistics/results/20230922122227067
https://www.ai-therapy.com/psychology-statistics/results/20230922122522604
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B.4.1 | Source Code Generation
Code Correctness

ChatGPT Copilot
Mean, Mode &
Median

https://www.ai-therapy.com/psychology-

statistics/results/20230922144727108

https://www.ai-therapy.com/psychology-

statistics/results/20230922144755056

Dispersion https://www.ai-therapy.com/psychology-

statistics/results/20230922144704553

https://www.ai-therapy.com/psychology-

statistics/results/20230922144813189

Normality test https://www.ai-therapy.com/psychology-

statistics/results/20230922144629088

https://www.ai-therapy.com/psychology-

statistics/results/20230922144850536

TABLE 38 Statistical Analysis for Code Correctness of Java code

ChatGPT Copilot
Mean, Mode &
Median

https://www.ai-therapy.com/psychology-

statistics/results/20230922144434667

https://www.ai-therapy.com/psychology-

statistics/results/20230922144151681

Dispersion https://www.ai-therapy.com/psychology-

statistics/results/20230922144411895

https://www.ai-therapy.com/psychology-

statistics/results/20230922144219794

Normality test https://www.ai-therapy.com/psychology-

statistics/results/20230922144347165

https://www.ai-therapy.com/psychology-

statistics/results/20230922144256711

TABLE 39 Statistical Analysis for Code Correctness of Python code

Code Quality

ChatGPT Copilot
Mean, Mode &
Median

https://www.ai-therapy.com/psychology-

statistics/results/20230922125457835

https://www.ai-therapy.com/psychology-

statistics/results/20230922125911300

Dispersion https://www.ai-therapy.com/psychology-

statistics/results/20230922125614192

https://www.ai-therapy.com/psychology-

statistics/results/20230922125831227

Normality test https://www.ai-therapy.com/psychology-

statistics/results/20230922125721837

https://www.ai-therapy.com/psychology-

statistics/results/20230922125806193

TABLE 40 Statistical Analysis for Code Quality of Java code

ChatGPT Copilot
Mean, Mode &
Median

https://www.ai-therapy.com/psychology-

statistics/results/20230922135305224

https://www.ai-therapy.com/psychology-

statistics/results/20230922135749242

Dispersion https://www.ai-therapy.com/psychology-

statistics/results/20230922135429913

https://www.ai-therapy.com/psychology-

statistics/results/20230922135657746

Normality test https://www.ai-therapy.com/psychology-

statistics/results/20230922135540031

https://www.ai-therapy.com/psychology-

statistics/results/20230922135629920

TABLE 41 Statistical Analysis for Code Quality of Python code

https://www.ai-therapy.com/psychology-statistics/results/20230922144727108
https://www.ai-therapy.com/psychology-statistics/results/20230922144727108
https://www.ai-therapy.com/psychology-statistics/results/20230922144755056
https://www.ai-therapy.com/psychology-statistics/results/20230922144755056
https://www.ai-therapy.com/psychology-statistics/results/20230922144704553
https://www.ai-therapy.com/psychology-statistics/results/20230922144704553
https://www.ai-therapy.com/psychology-statistics/results/20230922144813189
https://www.ai-therapy.com/psychology-statistics/results/20230922144813189
https://www.ai-therapy.com/psychology-statistics/results/20230922144629088
https://www.ai-therapy.com/psychology-statistics/results/20230922144629088
https://www.ai-therapy.com/psychology-statistics/results/20230922144850536
https://www.ai-therapy.com/psychology-statistics/results/20230922144850536
https://www.ai-therapy.com/psychology-statistics/results/20230922144434667
https://www.ai-therapy.com/psychology-statistics/results/20230922144434667
https://www.ai-therapy.com/psychology-statistics/results/20230922144151681
https://www.ai-therapy.com/psychology-statistics/results/20230922144151681
https://www.ai-therapy.com/psychology-statistics/results/20230922144411895
https://www.ai-therapy.com/psychology-statistics/results/20230922144411895
https://www.ai-therapy.com/psychology-statistics/results/20230922144219794
https://www.ai-therapy.com/psychology-statistics/results/20230922144219794
https://www.ai-therapy.com/psychology-statistics/results/20230922144347165
https://www.ai-therapy.com/psychology-statistics/results/20230922144347165
https://www.ai-therapy.com/psychology-statistics/results/20230922144256711
https://www.ai-therapy.com/psychology-statistics/results/20230922144256711
https://www.ai-therapy.com/psychology-statistics/results/20230922125457835
https://www.ai-therapy.com/psychology-statistics/results/20230922125457835
https://www.ai-therapy.com/psychology-statistics/results/20230922125911300
https://www.ai-therapy.com/psychology-statistics/results/20230922125911300
https://www.ai-therapy.com/psychology-statistics/results/20230922125614192
https://www.ai-therapy.com/psychology-statistics/results/20230922125614192
https://www.ai-therapy.com/psychology-statistics/results/20230922125831227
https://www.ai-therapy.com/psychology-statistics/results/20230922125831227
https://www.ai-therapy.com/psychology-statistics/results/20230922125721837
https://www.ai-therapy.com/psychology-statistics/results/20230922125721837
https://www.ai-therapy.com/psychology-statistics/results/20230922125806193
https://www.ai-therapy.com/psychology-statistics/results/20230922125806193
https://www.ai-therapy.com/psychology-statistics/results/20230922135305224
https://www.ai-therapy.com/psychology-statistics/results/20230922135305224
https://www.ai-therapy.com/psychology-statistics/results/20230922135749242
https://www.ai-therapy.com/psychology-statistics/results/20230922135749242
https://www.ai-therapy.com/psychology-statistics/results/20230922135429913
https://www.ai-therapy.com/psychology-statistics/results/20230922135429913
https://www.ai-therapy.com/psychology-statistics/results/20230922135657746
https://www.ai-therapy.com/psychology-statistics/results/20230922135657746
https://www.ai-therapy.com/psychology-statistics/results/20230922135540031
https://www.ai-therapy.com/psychology-statistics/results/20230922135540031
https://www.ai-therapy.com/psychology-statistics/results/20230922135629920
https://www.ai-therapy.com/psychology-statistics/results/20230922135629920
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B.4.2 | Test Case Generation
Code Correctness

ChatGPT Copilot
Mean, Mode &
Median

https://www.ai-therapy.com/psychology-

statistics/results/20231014174004808

https://www.ai-therapy.com/psychology-

statistics/results/20231014174340691

Dispersion https://www.ai-therapy.com/psychology-

statistics/results/20231014174043166

https://www.ai-therapy.com/psychology-

statistics/results/20231014174317297

Normality test https://www.ai-therapy.com/psychology-

statistics/results/20231014174211684

https://www.ai-therapy.com/psychology-

statistics/results/20231014174258521

TABLE 42 Statistical Analysis for Code Correctness of Java code

ChatGPT Copilot
Mean, Mode &
Median

https://www.ai-therapy.com/psychology-

statistics/results/20231014174635772

https://www.ai-therapy.com/psychology-

statistics/results/20231014174845382

Dispersion https://www.ai-therapy.com/psychology-

statistics/results/20231014174659244

https://www.ai-therapy.com/psychology-

statistics/results/20231014174823068

Normality test https://www.ai-therapy.com/psychology-

statistics/results/20231014174731212

https://www.ai-therapy.com/psychology-

statistics/results/20231014174800028

TABLE 43 Statistical Analysis for Code Correctness of Python code

Coverage

ChatGPT Copilot
Mean, Mode &
Median

https://www.ai-therapy.com/psychology-

statistics/results/20231014180218501

https://www.ai-therapy.com/psychology-

statistics/results/20231014180338252

Dispersion https://www.ai-therapy.com/psychology-

statistics/results/20231014180239265

https://www.ai-therapy.com/psychology-

statistics/results/20231014180356509

Normality test https://www.ai-therapy.com/psychology-

statistics/results/20231014180306590

https://www.ai-therapy.com/psychology-

statistics/results/20231014180423421

TABLE 44 Statistical Analysis for the Coverage of Java code

ChatGPT Copilot
Mean, Mode &
Median

https://www.ai-therapy.com/psychology-

statistics/results/20231014180928851

https://www.ai-therapy.com/psychology-

statistics/results/20231014181408346

Dispersion https://www.ai-therapy.com/psychology-

statistics/results/20231014180952019

https://www.ai-therapy.com/psychology-

statistics/results/20231014181309179

Normality test https://www.ai-therapy.com/psychology-

statistics/results/20231014181211619

https://www.ai-therapy.com/psychology-

statistics/results/20231014181245043

TABLE 45 Statistical Analysis for the Coverage of Python code

https://www.ai-therapy.com/psychology-statistics/results/20231014174004808
https://www.ai-therapy.com/psychology-statistics/results/20231014174004808
https://www.ai-therapy.com/psychology-statistics/results/20231014174340691
https://www.ai-therapy.com/psychology-statistics/results/20231014174340691
https://www.ai-therapy.com/psychology-statistics/results/20231014174043166
https://www.ai-therapy.com/psychology-statistics/results/20231014174043166
https://www.ai-therapy.com/psychology-statistics/results/20231014174317297
https://www.ai-therapy.com/psychology-statistics/results/20231014174317297
https://www.ai-therapy.com/psychology-statistics/results/20231014174211684
https://www.ai-therapy.com/psychology-statistics/results/20231014174211684
https://www.ai-therapy.com/psychology-statistics/results/20231014174258521
https://www.ai-therapy.com/psychology-statistics/results/20231014174258521
https://www.ai-therapy.com/psychology-statistics/results/20231014174635772
https://www.ai-therapy.com/psychology-statistics/results/20231014174635772
https://www.ai-therapy.com/psychology-statistics/results/20231014174845382
https://www.ai-therapy.com/psychology-statistics/results/20231014174845382
https://www.ai-therapy.com/psychology-statistics/results/20231014174659244
https://www.ai-therapy.com/psychology-statistics/results/20231014174659244
https://www.ai-therapy.com/psychology-statistics/results/20231014174823068
https://www.ai-therapy.com/psychology-statistics/results/20231014174823068
https://www.ai-therapy.com/psychology-statistics/results/20231014174731212
https://www.ai-therapy.com/psychology-statistics/results/20231014174731212
https://www.ai-therapy.com/psychology-statistics/results/20231014174800028
https://www.ai-therapy.com/psychology-statistics/results/20231014174800028
https://www.ai-therapy.com/psychology-statistics/results/20231014180218501
https://www.ai-therapy.com/psychology-statistics/results/20231014180218501
https://www.ai-therapy.com/psychology-statistics/results/20231014180338252
https://www.ai-therapy.com/psychology-statistics/results/20231014180338252
https://www.ai-therapy.com/psychology-statistics/results/20231014180239265
https://www.ai-therapy.com/psychology-statistics/results/20231014180239265
https://www.ai-therapy.com/psychology-statistics/results/20231014180356509
https://www.ai-therapy.com/psychology-statistics/results/20231014180356509
https://www.ai-therapy.com/psychology-statistics/results/20231014180306590
https://www.ai-therapy.com/psychology-statistics/results/20231014180306590
https://www.ai-therapy.com/psychology-statistics/results/20231014180423421
https://www.ai-therapy.com/psychology-statistics/results/20231014180423421
https://www.ai-therapy.com/psychology-statistics/results/20231014180928851
https://www.ai-therapy.com/psychology-statistics/results/20231014180928851
https://www.ai-therapy.com/psychology-statistics/results/20231014181408346
https://www.ai-therapy.com/psychology-statistics/results/20231014181408346
https://www.ai-therapy.com/psychology-statistics/results/20231014180952019
https://www.ai-therapy.com/psychology-statistics/results/20231014180952019
https://www.ai-therapy.com/psychology-statistics/results/20231014181309179
https://www.ai-therapy.com/psychology-statistics/results/20231014181309179
https://www.ai-therapy.com/psychology-statistics/results/20231014181211619
https://www.ai-therapy.com/psychology-statistics/results/20231014181211619
https://www.ai-therapy.com/psychology-statistics/results/20231014181245043
https://www.ai-therapy.com/psychology-statistics/results/20231014181245043
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Levenshtein Distance

ChatGPT Copilot
Mean, Mode &
Median

https://www.ai-therapy.com/psychology-

statistics/results/20231014175738530

https://www.ai-therapy.com/psychology-

statistics/results/20231014180037960

Dispersion https://www.ai-therapy.com/psychology-

statistics/results/20231014175816836

https://www.ai-therapy.com/psychology-

statistics/results/20231014180008955

Normality test https://www.ai-therapy.com/psychology-

statistics/results/20231014175906696

https://www.ai-therapy.com/psychology-

statistics/results/20231014175942039

TABLE 46 Statistical Analysis for the Levenshtein Distance of Java code

ChatGPT Copilot
Mean, Mode &
Median

https://www.ai-therapy.com/psychology-

statistics/results/20231014175114881

https://www.ai-therapy.com/psychology-

statistics/results/20231014175536934

Dispersion https://www.ai-therapy.com/psychology-

statistics/results/20231014175144498

https://www.ai-therapy.com/psychology-

statistics/results/20231014175513214

Normality test https://www.ai-therapy.com/psychology-

statistics/results/20231014175422664

https://www.ai-therapy.com/psychology-

statistics/results/20231014175454264

TABLE 47 Statistical Analysis for the Levenshtein Distance of Python code

C | GENERATION PROMPTS
C.1 | Source Code Generation
C.1.1 | Java
Bellman Ford
// Implement a non-static BellmanFord class with a static method bellmanFord(List<Edge> edges,
int source, int n).
// The method should return a Map<Integer, Integer> which contains the shortest path to every
other node in the graph.
// If there is a negative cycle, return null.
// If there is no path to another node, skip this node in the output.
// Implement a public local static class Edge with public int parameters source, dest, weight.

Binary Search
// Implement a non-static class named BinarySearch.
// Implement the public binarySearch(int, int[]) method. The method should return a boolean.

Binary To Decimal
// Implement a non-static BinaryToDecimal class.
// Implement the public convertToDecimal(String binary) method. The method should return an
int with the decimal.

Breadth First Search
// Implement a non-static breadth first search class named Graph(int vertices).
// Implement the public bfs(int sourceVertex) method. The method should return an integer
array of parent nodes for each vertex in the graph. The array of parent node values are all
initialized to -1 in the bfs(int sourceVertex) method.
// Implement the public addEdge(int, int). The method should add an edge between two vertices.

https://www.ai-therapy.com/psychology-statistics/results/20231014175738530
https://www.ai-therapy.com/psychology-statistics/results/20231014175738530
https://www.ai-therapy.com/psychology-statistics/results/20231014180037960
https://www.ai-therapy.com/psychology-statistics/results/20231014180037960
https://www.ai-therapy.com/psychology-statistics/results/20231014175816836
https://www.ai-therapy.com/psychology-statistics/results/20231014175816836
https://www.ai-therapy.com/psychology-statistics/results/20231014180008955
https://www.ai-therapy.com/psychology-statistics/results/20231014180008955
https://www.ai-therapy.com/psychology-statistics/results/20231014175906696
https://www.ai-therapy.com/psychology-statistics/results/20231014175906696
https://www.ai-therapy.com/psychology-statistics/results/20231014175942039
https://www.ai-therapy.com/psychology-statistics/results/20231014175942039
https://www.ai-therapy.com/psychology-statistics/results/20231014175114881
https://www.ai-therapy.com/psychology-statistics/results/20231014175114881
https://www.ai-therapy.com/psychology-statistics/results/20231014175536934
https://www.ai-therapy.com/psychology-statistics/results/20231014175536934
https://www.ai-therapy.com/psychology-statistics/results/20231014175144498
https://www.ai-therapy.com/psychology-statistics/results/20231014175144498
https://www.ai-therapy.com/psychology-statistics/results/20231014175513214
https://www.ai-therapy.com/psychology-statistics/results/20231014175513214
https://www.ai-therapy.com/psychology-statistics/results/20231014175422664
https://www.ai-therapy.com/psychology-statistics/results/20231014175422664
https://www.ai-therapy.com/psychology-statistics/results/20231014175454264
https://www.ai-therapy.com/psychology-statistics/results/20231014175454264
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Depth First Search
// Implement a non-static public class DepthFirstSearch.
// Implement the global variable public ArrayList<Integer> visitedNodes.
// Implement the global variable public List<List<Integer>>, which represents an adjacency list.
// Implement a constructor public DepthFirstSearch(List<Edge> edges, int n).
// Implement an inner class public static class Edge with global int variables source, dest.
// Implement the public void dfs(int startNode, boolean[] discovered) method. The method
should implement a depth first search algorithm by pre-order on an undirected graph and
write the visited nodes into the global ArrayList<Integer> visitedNodes.

Dijkstra
// Implement a non-static Dijkstra class with a constructor Dijkstra(List<Edge> edges, int n).
// Implement a public non-static method findShortestPaths(int source).
// This method should return a Map<Integer, Integer> which contains the shortest path to
every other node in the graph.
// If there is no path to another node, skip this node in the output.
// Implement a public local static class Edge with public int parameters source, dest, weight.
// Implement a public local static class Node with public int parameters vertex, weight.

Egyptian Fractions
// Implement a non-static class named EgyptianFractions.
// Implement the public build(Long numerator, Long denominator) method with a List<Long> return value.

FloydWarshall
// Implement a non-static FloydWarshall class with the constructor FloydWarshall(int nodes).
// Implement a non-static public method addEdge(int source, int dest, int weight), which returns nothing.
// Implement a non-static public method path(int source, int dest), which returns an Integer List.
// Implement a non-static public method run(), which runs the Floyd Warshall algorithm.

Knapsack
// Implement a non-static 0-1 knapsack class named Knapsack.
// Implement the public int bottomUp(int capacity, int[] weights, int[] values) method. The
method should return an int with the maximum value.

Kruskal
// Implement a non-static Kruskal class with a static method runKruskalAlgorithm(List edges,
int n). The method should return a List
// Implement a public local static class Edge with public int parameters src, dest, weight.
// Implement a public local static class DisjointSet which manages the graph.

Merge Sort
// Implement a non-static merge sort algorithm class named MergeSort with a public void mergeSort(int[]) method.

Quick Sort
// Implement a non-static quick sort algorithm class named QuickSort with a public void sort(int[]) method.

C.1.2 | Python
Bellman Ford
# Implement a Bellman Ford algorithm class named BellmanFord in python.
# The constructor should take an integer "vertices".
# Implement a public add_edge() method which takes three integers "source", "destination"
and "weight" and returns nothing.
# Implement a public method bellman_ford() which takes an integer "source".
# The method should return a dictionary, containing the shortest path to every other node in
the graph. If there is a negative cycle, return None.
# If there is no path to another node, skip this node in the output.

Binary Search
# Implement a non-static class named BinarySearch in python.
# Implement the public binary_search() method.
# The method should use an integer, an integer list as parameters.
# The method should return a boolean.
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Binary To Decimal
# Implement a non-static BinaryToDecimal class in python.
# Implement the public convert_to_decimal() method.
# The method should take a string "binary". The method should return an int with the decimal.

Breadth First Search
# Implement a non-static breadth first search class named Graph in python.
# The class should take an integer "vertices".
# Implement the public bfs() method. The method should take an integer "vertex".
# The method should return an integer list of visited nodes in the graph.
# Implement the public add_edge() method. The method should take two integers.
# The method should add an edge between two vertices.

Depth First Search
# Implement a depth first search algorithm class named DepthFirstSearch in python.
# Implement a public add_edge() method which takes two integers "source", "destination" and returns nothing.
# Implement a public dfs() method which takes an integer "start_node" and returns a list of visited nodes.

Dijkstra
# Implement a class named Dijkstra which implements the Dijkstra algorithm in python.
# The constructor should take an integer "vertices".
# Implement a method add_edge(), which takes three integers "source", "destination", "weight"
and returns nothing.
# Implement a method find_shortest_paths() which takes an integer "source" and returns a
dictionary, containing the shortest path to every other node in the graph.
# If there is no path to another node, skip this node in the output.

Egyptian Fractions
# Implement an egyptian fraction algorithm class named EgyptianFractions in python.
# Implement the public build() method which takes two long "numerator", "denominator" and returns a list.

FloydWarshall
# Implement a FloydWarshall algorithm class named FloydWarshall in python.
# The constructor should take an integer "nodes".
# Implement a public method add_edge() which takes three integers "source", "destination",
"weight" as parameters and returns nothing.
# Implement a public method path() which takes two integers "source" and "destination" and
returns an integer list. If there is no path from source to destination, return an empty list.
# Implement a public method run(), which runs the FloydWarshall algorithm.

Knapsack
# Implement a non-static 0-1 knapsack class named Knapsack in python.
# Implement the public bottom_up() method. The method should take an integer "capacity",
# an integer list "weights" and an integer list "values".
# The method should return an int with the maximum value.

Kruskal
# Implement a Kruskal algorithm class named Kruskal in python.
# The constructor should take an integer "vertices".
# Implement a public method add_edge() which takes three integers "source", "destination",
"weight" as parameters and returns nothing.
# Implement a method run_kruskal_algorithm() which creates the minimal spanning tree and
returns a list of edges.

Merge Sort
# Implement a non-static merge sort algorithm class named MergeSort with a public
# merge_sort() method in python. The method should take an integer list and
# should return the sorted list.

Quick Sort
# Implement a non-static quick sort algorithm class named QuickSort with a public sort()
# method in python. The method should take an integer list and should return nothing.
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C.2 | Test Case Generation
C.2.1 | Java - Prompt Only
Bellman Ford
// Implement a java test class called BellmanFordTest using JUnit version 4.
// The class BellmanFord that is to be tested contains the following:
// A local public static class Edge with public int parameters source, dest, weight.
// A public static Map<Integer, Integer> bellmanFord(List<Edge> edges, int source, int n)
method. The returned Map contains the shortest path to every other node in the graph.
// If there is a negative cycle, the method returns null.
// If there is no path to another node or if the source and destination node are the same,
this node is skipped in the output.
// Implement at least 3 different test cases.
// Build three graphs with the following edges and weights:
// Graph 1:
// List<BellmanFord.Edge> edges = Arrays.asList(
// new BellmanFord.Edge(0, 0, 1),
// new BellmanFord.Edge(1, 2, 3),
// new BellmanFord.Edge(1, 3, 2),
// new BellmanFord.Edge(1, 4, 2),
// new BellmanFord.Edge(3, 2, 5),
// new BellmanFord.Edge(4, 3, 3)
// );
// Graph 2:
// List<BellmanFord.Edge> edges = Arrays.asList(
// new BellmanFord.Edge(0, 1, -1),
// new BellmanFord.Edge(0, 2, 4),
// new BellmanFord.Edge(1, 2, 3),
// new BellmanFord.Edge(1, 4, -2),
// new BellmanFord.Edge(3, 2, 5),
// new BellmanFord.Edge(3, 1, 1),
// new BellmanFord.Edge(4, 3, -3)
// );
// Graph 3:
// List<BellmanFord.Edge> edges = Arrays.asList(
// new BellmanFord.Edge(0, 1, -1),
// new BellmanFord.Edge(0, 2, 4),
// new BellmanFord.Edge(1, 2, 3),
// new BellmanFord.Edge(1, 3, 2),
// new BellmanFord.Edge(1, 4, 2),
// new BellmanFord.Edge(3, 2, 5),
// new BellmanFord.Edge(3, 1, 1),
// new BellmanFord.Edge(4, 3, -3)
// );

Binary Search
// Implement a java test class called BinarySearchTest using JUnit version 4.
// The class BinarySearch that is to be tested contains the following:
// A public boolean binarySearch(int x, int[] sortedNumbers) method.
// Implement at least 3 different test cases.

Binary To Decimal
// Implement a java test class called BinaryToDecimalTest using JUnit version 4.
// The class BinaryToDecimal that is to be tested contains the following:
// A public int convertToDecimal(String binary) method. The returned int contains the decimal.
// Implement at least 3 different test cases.

Breadth First Search
// Implement a java test class called GraphTest using JUnit version 4.
// The class Graph that is to be tested implements the breadth first search algorithm
and contains the following:
// A constructor Graph(int vertices).
// A public int[] bfs(int sourceVertex) method. The returned integer array contains the
parent nodes for each vertex in the graph. The values of the parent node array are all
initialized to -1 in the bfs(int sourceVertex) method.
// A public void addEdge(int, int) method, which adds an edge between two vertices.
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// Implement at least 3 different test cases.
// Build a graph with the following edges:
// breadthFirstSearch.addEdge(0, 1);
// breadthFirstSearch.addEdge(0, 2);
// breadthFirstSearch.addEdge(1, 3);
// breadthFirstSearch.addEdge(2, 3);
// breadthFirstSearch.addEdge(3, 4);
// breadthFirstSearch.addEdge(3, 5);

Depth First Search
// Implement a java test class called DepthFirstSearchTest using JUnit version 4.
// The class DepthFirstSearch that is to be tested contains the following:
// A global variable public ArrayList<Integer> visitedNodes.
// A global variable public List<List<Integer>>, which represents an adjacency list.
// A constructor public DepthFirstSearch(List<Edge> edges, int n).
// An inner public static class Edge with global int variables source, dest.
// A public void dfs(int startNode, boolean[] discovered) method. The method implements
a depth first search algorithm by pre-order on an undirected graph and writes the visited
nodes into the global ArrayList<Integer> visitedNodes.
// Consider all possible permutations.
// Implement at least 3 different test cases.
// Build a graph with the following edges:
// List<DepthFirstSearch.Edge> edges = Arrays.asList(
// new DepthFirstSearch.Edge(0, 1),
// new DepthFirstSearch.Edge(0, 3),
// new DepthFirstSearch.Edge(1, 4),
// new DepthFirstSearch.Edge(2, 4),
// new DepthFirstSearch.Edge(2, 5),
// new DepthFirstSearch.Edge(3, 1),
// new DepthFirstSearch.Edge(4, 3),
// new DepthFirstSearch.Edge(5, 5),
// new DepthFirstSearch.Edge(6, 6)
// );

Dijkstra
// Implement a java test class called DijkstraTest using JUnit version 4.
// The class Dijkstra that is to be tested contains the following:
// A constructor Dijkstra(List<Edge> edges, int n).
// A local public static class Edge with public int parameters source, dest, weight.
// A local public class Node with public int parameters vertex, weight.
// A public boolean onlyPositiveEdgeCosts() method.
// A public Map<Integer, Integer> findShortestPaths(int source) method. The returned Map
contains the shortest path to every other node in the graph.
// If there is no path to another node or if the source and destination node are the same,
the node is skipped in the output.
// Implement at least 3 different test cases.
// Build three graphs with the following edges and weights:
// Graph 1:
// List<Dijkstra.Edge> edges = Arrays.asList(
// new Dijkstra.Edge(0, 1, 1),
// new Dijkstra.Edge(0, 2, 4),
// new Dijkstra.Edge(1, 2, 3),
// new Dijkstra.Edge(1, 3, 2),
// new Dijkstra.Edge(1, 4, 2),
// new Dijkstra.Edge(3, 2, 5),
// new Dijkstra.Edge(4, 3, 3)
// );
// Graph 2:
// List<Dijkstra.Edge> edges = Arrays.asList(
// new Dijkstra.Edge(0, 1, 1),
// new Dijkstra.Edge(0, 2, 4),
// new Dijkstra.Edge(1, 2, 3),
// new Dijkstra.Edge(1, 3, 2),
// new Dijkstra.Edge(1, 4, 2),
// new Dijkstra.Edge(3, 2, 5),
// new Dijkstra.Edge(3, 1, 1),
// new Dijkstra.Edge(4, 3, 3)
// );



38 Beer, Feix, Guttzeit, Muras, Müller, Rauscher, Schäffler, Löwe
// Graph 3:
// List<Dijkstra.Edge> edges = Arrays.asList(
// new Dijkstra.Edge(0, 0, 1),
// new Dijkstra.Edge(1, 2, 3),
// new Dijkstra.Edge(1, 3, 2),
// new Dijkstra.Edge(1, 4, 2),
// new Dijkstra.Edge(3, 2, 5),
// new Dijkstra.Edge(4, 3, 3)
// );

Egyptian Fractions
// Implement a java test class called EgyptianFractionsTest using JUnit version 4.
// The class EgyptianFractions that is to be tested contains the following:
// A public List<Long> build(Long numerator, Long denominator) method.
// Implement at least 3 different test cases.

FloydWarshall
// Implement a java test class called FloydWarshallTest using JUnit version 4.
// The class FloydWarshall that is to be tested contains the following:
// A constructor FloydWarshall(int nodes).
// A non-static public void addEdge(int source, int dest, int weight) method.
// A non-static public List<Integer> path(int source, int dest) method.
// A non-static public void run() method, which runs the floyd warshall algorithm.
// If there is no path from source to destination or if the source and destination node
are the same, the node is skipped in the output.
// Implement at least 3 different test cases.
// Build two graphs with the following edges and weights:
// Graph 1:
// floydWarshall.addEdge(0, 1, 10);
// floydWarshall.addEdge(0, 3, 5);
// floydWarshall.addEdge(1, 3, 2);
// floydWarshall.addEdge(1, 2, 1);
// floydWarshall.addEdge(2, 4, 4);
// floydWarshall.addEdge(3, 1, 3);
// floydWarshall.addEdge(3, 2, 9);
// floydWarshall.addEdge(3, 4, 2);
// floydWarshall.addEdge(4, 2, 6);
// Graph 2:
// floydWarshall.addEdge(0, 2, 5);
// floydWarshall.addEdge(1, 3, 5);
// floydWarshall.addEdge(2, 3, 4);
// floydWarshall.addEdge(3, 2, 4);
// floydWarshall.addEdge(4, 3, 4);
// floydWarshall.addEdge(2, 4, -2);

Knapsack
// Implement a java test class called KnapsackTest using JUnit version 4.
// The class Knapsack that is to be tested contains the following:
// A public int bottomUp(int capacity, int[] weights, int[] values) method. The returned
int contains the maximum value.
// Implement at least 3 different test cases.

Kruskal
// Implement a java test class called KruskalTest using JUnit version 4.
// The class Kruskal that is to be tested contains the following:
// A public static List<Edge> runKruskalAlgorithm(List<Edge> edges, int n) method.
// A local public static class Edge with public int parameters src, dest, weight.
// A local public static class DisjointSet, which manages the graph.
// Implement at least 3 different test cases.
// Build two graphs with the following edges and weights:
// Graph 1:
// List<Kruskal.Edge> edges = Arrays.asList(
// new Kruskal.Edge(0, 1, 7),
// new Kruskal.Edge(1, 2, 8),
// new Kruskal.Edge(0, 3, 5),
// new Kruskal.Edge(1, 3, 9),
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// new Kruskal.Edge(1, 4, 7),
// new Kruskal.Edge(2, 4, 5),
// new Kruskal.Edge(3, 4, 15),
// new Kruskal.Edge(3, 5, 6),
// new Kruskal.Edge(4, 5, 8),
// new Kruskal.Edge(4, 6, 9),
// new Kruskal.Edge(5, 6, 11)
// );
// Graph 2:
// List<Kruskal.Edge> edges = Arrays.asList(
// new Kruskal.Edge(0, 1, -3),
// new Kruskal.Edge(0, 4, 1),
// new Kruskal.Edge(4, 1, 4),
// new Kruskal.Edge(2, 1, 9),
// new Kruskal.Edge(2, 4, 3),
// new Kruskal.Edge(4, 3, 2)
// );

Merge Sort
// Implement a java test class called MergeSortTest using JUnit version 4.
// The class MergeSort that is to be tested contains the following:
// A public void mergeSort(int[]) method.
// Implement at least 3 different test cases.

Quick Sort
// Implement a java test class called QuickSortTest using JUnit version 4.
// The class QuickSort that is to be tested contains the following:
// A public void sort(int[]) method.
// Implement at least 3 different test cases.

C.2.2 | Java - Book Example/AI Generated Reference Code
Bellman Ford
// Implement a java test class for the bellman ford algorithm above using JUnit version 4.
// Implement at least 3 different test cases.
// Build three graphs with the following edges and weights:
// Graph 1:
// List<BellmanFord.Edge> edges = Arrays.asList(
// new BellmanFord.Edge(0, 0, 1),
// new BellmanFord.Edge(1, 2, 3),
// new BellmanFord.Edge(1, 3, 2),
// new BellmanFord.Edge(1, 4, 2),
// new BellmanFord.Edge(3, 2, 5),
// new BellmanFord.Edge(4, 3, 3)
// );
// Graph 2:
// List<BellmanFord.Edge> edges = Arrays.asList(
// new BellmanFord.Edge(0, 1, -1),
// new BellmanFord.Edge(0, 2, 4),
// new BellmanFord.Edge(1, 2, 3),
// new BellmanFord.Edge(1, 4, -2),
// new BellmanFord.Edge(3, 2, 5),
// new BellmanFord.Edge(3, 1, 1),
// new BellmanFord.Edge(4, 3, -3)
// );
// Graph 3:
// List<BellmanFord.Edge> edges = Arrays.asList(
// new BellmanFord.Edge(0, 1, -1),
// new BellmanFord.Edge(0, 2, 4),
// new BellmanFord.Edge(1, 2, 3),
// new BellmanFord.Edge(1, 3, 2),
// new BellmanFord.Edge(1, 4, 2),
// new BellmanFord.Edge(3, 2, 5),
// new BellmanFord.Edge(3, 1, 1),
// new BellmanFord.Edge(4, 3, -3)
// );
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Binary Search
// Implement a java test class for the binary search algorithm above using JUnit version 4.
// Implement at least 3 different test cases.

Binary To Decimal
// Implement a java test class for the binary to decimal algorithm above using JUnit version 4.
// Implement at least 3 different test cases.

Breadth First Search
// Implement a java test class for the breadth first search algorithm above using JUnit version 4.
// Implement at least 3 different test cases.
// Build a graph with the following edges:
// breadthFirstSearch.addEdge(0, 1);
// breadthFirstSearch.addEdge(0, 2);
// breadthFirstSearch.addEdge(1, 3);
// breadthFirstSearch.addEdge(2, 3);
// breadthFirstSearch.addEdge(3, 4);
// breadthFirstSearch.addEdge(3, 5);

Depth First Search
// Implement a java test class for the depth first search algorithm above using JUnit version 4.
// Implement at least 3 different test cases.
// Build a graph with the following edges:
// List<DepthFirstSearch.Edge> edges = Arrays.asList(
// new DepthFirstSearch.Edge(0, 1),
// new DepthFirstSearch.Edge(0, 3),
// new DepthFirstSearch.Edge(1, 4),
// new DepthFirstSearch.Edge(2, 4),
// new DepthFirstSearch.Edge(2, 5),
// new DepthFirstSearch.Edge(3, 1),
// new DepthFirstSearch.Edge(4, 3),
// new DepthFirstSearch.Edge(5, 5),
// new DepthFirstSearch.Edge(6, 6)
// );

Dijkstra
// Implement a java test class for the dijkstra algorithm above using JUnit version 4.
// Implement at least 3 different test cases.
// Build three graphs with the following edges and weights:
// Graph 1:
// List<Dijkstra.Edge> edges = Arrays.asList(
// new Dijkstra.Edge(0, 1, 1),
// new Dijkstra.Edge(0, 2, 4),
// new Dijkstra.Edge(1, 2, 3),
// new Dijkstra.Edge(1, 3, 2),
// new Dijkstra.Edge(1, 4, 2),
// new Dijkstra.Edge(3, 2, 5),
// new Dijkstra.Edge(4, 3, 3)
// );
// Graph 2:
// List<Dijkstra.Edge> edges = Arrays.asList(
// new Dijkstra.Edge(0, 1, 1),
// new Dijkstra.Edge(0, 2, 4),
// new Dijkstra.Edge(1, 2, 3),
// new Dijkstra.Edge(1, 3, 2),
// new Dijkstra.Edge(1, 4, 2),
// new Dijkstra.Edge(3, 2, 5),
// new Dijkstra.Edge(3, 1, 1),
// new Dijkstra.Edge(4, 3, 3)
// );
// Graph 3:
// List<Dijkstra.Edge> edges = Arrays.asList(
// new Dijkstra.Edge(0, 0, 1),
// new Dijkstra.Edge(1, 2, 3),
// new Dijkstra.Edge(1, 3, 2),
// new Dijkstra.Edge(1, 4, 2),
// new Dijkstra.Edge(3, 2, 5),
// new Dijkstra.Edge(4, 3, 3)
// );
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Egyptian Fractions
// Implement a java test class for the egyptian fractions algorithm above using JUnit version 4.
// Implement at least 3 different test cases.

FloydWarshall
// Implement a java test class for the floyd warshall algorithm above using JUnit version 4.
// Implement at least 3 different test cases.
// Build two graphs with the following edges and weights:
// Graph 1:
// floydWarshall.addEdge(0, 1, 10);
// floydWarshall.addEdge(0, 3, 5);
// floydWarshall.addEdge(1, 3, 2);
// floydWarshall.addEdge(1, 2, 1);
// floydWarshall.addEdge(2, 4, 4);
// floydWarshall.addEdge(3, 1, 3);
// floydWarshall.addEdge(3, 2, 9);
// floydWarshall.addEdge(3, 4, 2);
// floydWarshall.addEdge(4, 2, 6);
// Graph 2:
// floydWarshall.addEdge(0, 2, 5);
// floydWarshall.addEdge(1, 3, 5);
// floydWarshall.addEdge(2, 3, 4);
// floydWarshall.addEdge(3, 2, 4);
// floydWarshall.addEdge(4, 3, 4);
// floydWarshall.addEdge(2, 4, -2);

Knapsack
// Implement a java test class for the knapsack algorithm above using JUnit version 4.
// Implement at least 3 different test cases.

Kruskal
// Implement a java test class for the kruskal algorithm above using JUnit version 4.
// Implement at least 3 different test cases.
// Build two graphs with the following edges and weights:
// Graph 1:
// List<Kruskal.Edge> edges = Arrays.asList(
// new Kruskal.Edge(0, 1, 7),
// new Kruskal.Edge(1, 2, 8),
// new Kruskal.Edge(0, 3, 5),
// new Kruskal.Edge(1, 3, 9),
// new Kruskal.Edge(1, 4, 7),
// new Kruskal.Edge(2, 4, 5),
// new Kruskal.Edge(3, 4, 15),
// new Kruskal.Edge(3, 5, 6),
// new Kruskal.Edge(4, 5, 8),
// new Kruskal.Edge(4, 6, 9),
// new Kruskal.Edge(5, 6, 11)
// );
// Graph 2:
// List<Kruskal.Edge> edges = Arrays.asList(
// new Kruskal.Edge(0, 1, -3),
// new Kruskal.Edge(0, 4, 1),
// new Kruskal.Edge(4, 1, 4),
// new Kruskal.Edge(2, 1, 9),
// new Kruskal.Edge(2, 4, 3),
// new Kruskal.Edge(4, 3, 2)
// );

Merge Sort
// Implement a java test class for the merge sort algorithm above using JUnit version 4.
// Implement at least 3 different test cases.

Quick Sort
// Implement a java test class for the quick sort algorithm above using JUnit version 4.
// Implement at least 3 different test cases.



42 Beer, Feix, Guttzeit, Muras, Müller, Rauscher, Schäffler, Löwe
C.2.3 | Python - Prompt Only
Bellman Ford
# Implement a python test class called BellmanFordTest using the unittest module.
# The class BellmanFord that is to be tested contains the following methods:
# A constructor, which takes an integer "vertices".
# A public method add_edge(), which takes three integers "source", "destination", "weight" and returns nothing.
# A public method bellman_ford(), which takes an integer "source" and returns a dictionary,
containing the shortest path to every other node in the graph.
# If there is a negative cycle, the method returns None.
# If there is no path from source to destination or if the source and destination node are
the same, this node is skipped in the output.
# Implement at least 3 different test cases.
# Build three graphs with the following edges and weights:
# Graph 1:
# self.bellmanFord.add_edge(0, 1, -1)
# self.bellmanFord.add_edge(0, 2, 4)
# self.bellmanFord.add_edge(1, 2, 3)
# self.bellmanFord.add_edge(1, 3, 2)
# self.bellmanFord.add_edge(1, 4, 2)
# self.bellmanFord.add_edge(3, 1, 1)
# self.bellmanFord.add_edge(4, 3, -3)
# Graph 2:
# self.bellmanFord.add_edge(0, 1, -1)
# self.bellmanFord.add_edge(0, 2, 4)
# self.bellmanFord.add_edge(1, 2, 3)
# self.bellmanFord.add_edge(1, 4, -2)
# self.bellmanFord.add_edge(3, 2, 5)
# self.bellmanFord.add_edge(3, 1, 1)
# self.bellmanFord.add_edge(4, 3, -3)
# Graph 3:
# self.bellmanFord.add_edge(0, 0, 1)
# self.bellmanFord.add_edge(1, 2, 3)
# self.bellmanFord.add_edge(1, 3, 2)
# self.bellmanFord.add_edge(1, 4, 2)
# self.bellmanFord.add_edge(3, 2, 5)
# self.bellmanFord.add_edge(4, 3, 3)

Binary Search
# Implement a python test class called BinarySearchTest using the unittest module.
# The class BinarySearch that is to be tested contains the following methods:
# A public method binary_search(), which takes an integer and an integer list as parameters
and returns a boolean.
# Implement at least 3 different test cases.

Binary To Decimal
# Implement a python test class called BinaryToDecimalTest using the unittest module.
# The class BinaryToDecimal that is to be tested contains the following methods:
# A public method convert_to_decimal(), which takes a string "binary" as parameter and
returns an integer with the decimal.
# Implement at least 3 different test cases.

Breadth First Search
# Implement a python test class called GraphTest using the unittest module.
# The class Graph that is to be tested implements the breadth first search algorithm and
contains the following methods:
# A constructor that takes an integer "vertices".
# A public method bfs(), which takes an integer "vertex" as parameter and returns an integer
list of visited nodes in the graph.
# A public method add_edge(), which takes two integers as parameters and adds an edge between two vertices.
# Implement at least 3 different test cases.
# Build a graph with the following edges:
# self.graph.add_edge(0, 1)
# self.graph.add_edge(1, 0)
# self.graph.add_edge(0, 2)
# self.graph.add_edge(2, 0)
# self.graph.add_edge(1, 3)
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# self.graph.add_edge(3, 1)
# self.graph.add_edge(2, 3)
# self.graph.add_edge(3, 2)
# self.graph.add_edge(3, 4)
# self.graph.add_edge(4, 3)
# self.graph.add_edge(3, 5)
# self.graph.add_edge(5, 3)

Depth First Search
# Implement a python test class called DepthFirstSearchTest using the unittest module.
# The class DepthFirstSearch that is to be tested contains the following methods:
# A public method add_edge(), which takes two integers "source" and "destination" as
parameters and returns nothing.
# A public method dfs(), which takes an integer "start_node" and returns a list of
visited nodes.
# Consider all possible permutations.
# Implement at least 3 different test cases.
# Build a graph with the following edges:
# self.depthFirstSearch.add_edge(0, 1)
# self.depthFirstSearch.add_edge(1, 0)
# self.depthFirstSearch.add_edge(0, 3)
# self.depthFirstSearch.add_edge(3, 0)
# self.depthFirstSearch.add_edge(1, 4)
# self.depthFirstSearch.add_edge(4, 1)
# self.depthFirstSearch.add_edge(2, 4)
# self.depthFirstSearch.add_edge(4, 2)
# self.depthFirstSearch.add_edge(2, 5)
# self.depthFirstSearch.add_edge(5, 2)
# self.depthFirstSearch.add_edge(3, 1)
# self.depthFirstSearch.add_edge(1, 3)
# self.depthFirstSearch.add_edge(4, 3)
# self.depthFirstSearch.add_edge(3, 4)
# self.depthFirstSearch.add_edge(5, 5)
# self.depthFirstSearch.add_edge(6, 6)

Dijkstra
# Implement a python test class called DijkstraTest using the unittest module.
# The class Dijkstra that is to be tested contains the following methods:
# A constructor, which takes an integer "vertices".
# A public method add_edge(), which takes three integers "source", "destination", "weight" and returns nothing.
# A public method find_shortest_paths(), which takes an integer "source" and returns a
dictionary, containing the shortest path to every other node in the graph.
# If there is no path from source to destination or if the source and destination node
are the same, this node is skipped in the output.
# Implement at least 3 different test cases.
# Build two graphs with the following edges and weights:
# Graph 1:
# self.dijkstra.add_edge(0, 1, 1)
# self.dijkstra.add_edge(0, 2, 4)
# self.dijkstra.add_edge(1, 2, 3)
# self.dijkstra.add_edge(1, 3, 2)
# self.dijkstra.add_edge(1, 4, 2)
# self.dijkstra.add_edge(3, 2, 5)
# self.dijkstra.add_edge(3, 1, 1)
# self.dijkstra.add_edge(4, 3, 3)
# Graph 2:
# self.dijkstra.add_edge(0, 0, 1)
# self.dijkstra.add_edge(1, 2, 3)
# self.dijkstra.add_edge(1, 3, 2)
# self.dijkstra.add_edge(1, 4, 2)
# self.dijkstra.add_edge(3, 2, 5)
# self.dijkstra.add_edge(4, 3, 3)

Egyptian Fractions
# Implement a python test class called EgyptianFractionsTest using the unittest module.
# The class EgyptianFractions that is to be tested contains the following methods:
# A public method build(), which takes two long "numerator" and "denominator" as parameters and returns a list.
# Implement at least 3 different test cases.
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FloydWarshall
# Implement a python test class called FloydWarshallTest using the unittest module.
# The class FloydWarshall that is to be tested contains the following methods:
# A constructor, which takes an integer "nodes".
# A public method add_edge(), which takes three integers "source", "destination", "weight"
as parameters and returns nothing.
# A public method path(), which takes two integers "source" and "destination" and returns
an integer list.
# A public method run(), which runs the floyd warshall algorithm.
# If there is no path from source to destination or if the source and destination node are
the same, this node is skipped in the output.
# Implement at least 3 different test cases.
# Build two graphs with the following edges and weights:
# Graph 1:
# self.floydWarshall.add_edge(0, 1, 10)
# self.floydWarshall.add_edge(0, 3, 5)
# self.floydWarshall.add_edge(1, 3, 2)
# self.floydWarshall.add_edge(1, 2, 1)
# self.floydWarshall.add_edge(2, 4, 4)
# self.floydWarshall.add_edge(3, 1, 3)
# self.floydWarshall.add_edge(3, 2, 9)
# self.floydWarshall.add_edge(3, 4, 2)
# self.floydWarshall.add_edge(4, 2, 6)
# Graph 2:
# self.floydWarshall.add_edge(0, 2, 5)
# self.floydWarshall.add_edge(1, 3, 5)
# self.floydWarshall.add_edge(2, 3, 4)
# self.floydWarshall.add_edge(3, 2, 4)
# self.floydWarshall.add_edge(4, 3, 4)
# self.floydWarshall.add_edge(2, 4, -2)

Knapsack
# Implement a python test class called KnapsackTest using the unittest module.
# The class Knapsack that is to be tested contains the following methods:
# A public method bottom_up(), which takes an integer "capacity", an integer list "weights"
and an integer list "values" as parameters and returns an integer with the maximum value.
# Implement at least 3 different test cases.

Kruskal
# Implement a python test class called KruskalTest using the unittest module.
# The class Kruskal that is to be tested contains the following methods:
# A constructor, which takes an integer "vertices".
# A public method add_edge(), which takes three integers "source", "destination", "weight"
as parameters and returns nothing.
# A public method run_kruskal_algorithm(), which creates the minimal spanning tree and returns a list of edges.
# Implement at least 3 different test cases.
# Build two graphs with the following edges and weights:
# Graph 1:
# self.kruskal.add_edge(5, 6, 11)
# self.kruskal.add_edge(0, 1, 7)
# self.kruskal.add_edge(1, 2, 8)
# self.kruskal.add_edge(0, 3, 5)
# self.kruskal.add_edge(1, 3, 9)
# self.kruskal.add_edge(1, 4, 7)
# self.kruskal.add_edge(2, 4, 5)
# self.kruskal.add_edge(3, 4, 15)
# self.kruskal.add_edge(3, 5, 6)
# self.kruskal.add_edge(4, 5, 8)
# self.kruskal.add_edge(4, 6, 9)
# Graph 2:
# self.kruskal.add_edge(0, 1, -3)
# self.kruskal.add_edge(0, 4, 1)
# self.kruskal.add_edge(4, 1, 4)
# self.kruskal.add_edge(2, 1, 9)
# self.kruskal.add_edge(2, 4, 3)
# self.kruskal.add_edge(4, 3, 2)
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Merge Sort
# Implement a python test class called MergeSortTest using the unittest module.
# The class MergeSort that is to be tested contains the following methods:
# A public method merge_sort(), which takes an integer list as parameter and returns a sorted integer list.
# Implement at least 3 different test cases.

Quick Sort
# Implement a python test class called QuickSortTest using the unittest module.
# The class QuickSort that is to be tested contains the following methods:
# A public method sort(), which takes an integer list as parameter and returns nothing.
# Implement at least 3 different test cases.

C.2.4 | Python - Book Example/AI Generated Reference Code
Bellman Ford
# Implement a test class for the bellman ford algorithm above using the python unittest module.
# Implement at least 3 different test cases.
# Build three graphs with the following edges and weights:
# Graph 1:
# self.bellmanFord.add_edge(0, 1, -1)
# self.bellmanFord.add_edge(0, 2, 4)
# self.bellmanFord.add_edge(1, 2, 3)
# self.bellmanFord.add_edge(1, 3, 2)
# self.bellmanFord.add_edge(1, 4, 2)
# self.bellmanFord.add_edge(3, 1, 1)
# self.bellmanFord.add_edge(4, 3, -3)
# Graph 2:
# self.bellmanFord.add_edge(0, 1, -1)
# self.bellmanFord.add_edge(0, 2, 4)
# self.bellmanFord.add_edge(1, 2, 3)
# self.bellmanFord.add_edge(1, 4, -2)
# self.bellmanFord.add_edge(3, 2, 5)
# self.bellmanFord.add_edge(3, 1, 1)
# self.bellmanFord.add_edge(4, 3, -3)
# Graph 3:
# self.bellmanFord.add_edge(0, 0, 1)
# self.bellmanFord.add_edge(1, 2, 3)
# self.bellmanFord.add_edge(1, 3, 2)
# self.bellmanFord.add_edge(1, 4, 2)
# self.bellmanFord.add_edge(3, 2, 5)
# self.bellmanFord.add_edge(4, 3, 3)

Binary Search
# Implement a test class for the binary search algorithm above using the python unittest module.
# Implement at least 3 different test cases.

Binary To Decimal
# Implement a test class for the binary to decimal algorithm above using the python unittest module.
# Implement at least 3 different test cases.

Breadth First Search
# Implement a test class for the breadth first search algorithm above using the python unittest module.
# Implement at least 3 different test cases.
# Build a graph with the following edges:
# self.graph.add_edge(0, 1)
# self.graph.add_edge(1, 0)
# self.graph.add_edge(0, 2)
# self.graph.add_edge(2, 0)
# self.graph.add_edge(1, 3)
# self.graph.add_edge(3, 1)
# self.graph.add_edge(2, 3)
# self.graph.add_edge(3, 2)
# self.graph.add_edge(3, 4)
# self.graph.add_edge(4, 3)
# self.graph.add_edge(3, 5)
# self.graph.add_edge(5, 3)
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Depth First Search
# Implement a test class for the depth first search algorithm above using the python unittest module.
# Implement at least 3 different test cases.
# Consider all possible permutations.
# Build a graph with the following edges:
# self.depthFirstSearch.add_edge(0, 1)
# self.depthFirstSearch.add_edge(1, 0)
# self.depthFirstSearch.add_edge(0, 3)
# self.depthFirstSearch.add_edge(3, 0)
# self.depthFirstSearch.add_edge(1, 4)
# self.depthFirstSearch.add_edge(4, 1)
# self.depthFirstSearch.add_edge(2, 4)
# self.depthFirstSearch.add_edge(4, 2)
# self.depthFirstSearch.add_edge(2, 5)
# self.depthFirstSearch.add_edge(5, 2)
# self.depthFirstSearch.add_edge(3, 1)
# self.depthFirstSearch.add_edge(1, 3)
# self.depthFirstSearch.add_edge(4, 3)
# self.depthFirstSearch.add_edge(3, 4)
# self.depthFirstSearch.add_edge(5, 5)
# self.depthFirstSearch.add_edge(6, 6)

Dijkstra
# Implement a test class for the dijkstra algorithm above using the python unittest module.
# Implement at least 3 different test cases.
# Build two graphs with the following edges and weights:
# Graph 1:
# self.dijkstra.add_edge(0, 1, 1)
# self.dijkstra.add_edge(0, 2, 4)
# self.dijkstra.add_edge(1, 2, 3)
# self.dijkstra.add_edge(1, 3, 2)
# self.dijkstra.add_edge(1, 4, 2)
# self.dijkstra.add_edge(3, 2, 5)
# self.dijkstra.add_edge(3, 1, 1)
# self.dijkstra.add_edge(4, 3, 3)
# Graph 2:
# self.dijkstra.add_edge(0, 0, 1)
# self.dijkstra.add_edge(1, 2, 3)
# self.dijkstra.add_edge(1, 3, 2)
# self.dijkstra.add_edge(1, 4, 2)
# self.dijkstra.add_edge(3, 2, 5)
# self.dijkstra.add_edge(4, 3, 3)

Egyptian Fractions
# Implement a test class for the egyptian fractions algorithm above using the python unittest module.
# Implement at least 3 different test cases.

FloydWarshall
# Implement a test class for the floyd warshall algorithm above using the python unittest module.
# Implement at least 3 different test cases.
# Build two graphs with the following edges and weights:
# Graph 1:
# self.floydWarshall.add_edge(0, 1, 10)
# self.floydWarshall.add_edge(0, 3, 5)
# self.floydWarshall.add_edge(1, 3, 2)
# self.floydWarshall.add_edge(1, 2, 1)
# self.floydWarshall.add_edge(2, 4, 4)
# self.floydWarshall.add_edge(3, 1, 3)
# self.floydWarshall.add_edge(3, 2, 9)
# self.floydWarshall.add_edge(3, 4, 2)
# self.floydWarshall.add_edge(4, 2, 6)
# Graph 2:
# self.floydWarshall.add_edge(0, 2, 5)
# self.floydWarshall.add_edge(1, 3, 5)
# self.floydWarshall.add_edge(2, 3, 4)
# self.floydWarshall.add_edge(3, 2, 4)
# self.floydWarshall.add_edge(4, 3, 4)
# self.floydWarshall.add_edge(2, 4, -2)
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Knapsack
# Implement a test class for the knapsack algorithm above using the python unittest module.
# Implement at least 3 different test cases.

Kruskal
# Implement a test class for the kruskal algorithm above using the python unittest module.
# Implement at least 3 different test cases.
# Build two graphs with the following edges and weights:
# Graph 1:
# self.kruskal.add_edge(5, 6, 11)
# self.kruskal.add_edge(0, 1, 7)
# self.kruskal.add_edge(1, 2, 8)
# self.kruskal.add_edge(0, 3, 5)
# self.kruskal.add_edge(1, 3, 9)
# self.kruskal.add_edge(1, 4, 7)
# self.kruskal.add_edge(2, 4, 5)
# self.kruskal.add_edge(3, 4, 15)
# self.kruskal.add_edge(3, 5, 6)
# self.kruskal.add_edge(4, 5, 8)
# self.kruskal.add_edge(4, 6, 9)
# Graph 2:
# self.kruskal.add_edge(0, 1, -3)
# self.kruskal.add_edge(0, 4, 1)
# self.kruskal.add_edge(4, 1, 4)
# self.kruskal.add_edge(2, 1, 9)
# self.kruskal.add_edge(2, 4, 3)
# self.kruskal.add_edge(4, 3, 2)

Merge Sort
# Implement a test class for the merge sort algorithm above using the python unittest module.
# Implement at least 3 different test cases.

Quick Sort
# Implement a test class for the quicksort algorithm above using the python unittest module.
# Implement at least 3 different test cases.
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