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One of the grand challenges of artificial general intelligence is developing agents capable of conducting
scientific research and discovering new knowledge. While frontier models have already been used as aids
to human scientists, e.g. for brainstorming ideas, writing code, or prediction tasks, they still conduct
only a small part of the scientific process. This paper presents the first comprehensive framework for
fully automatic scientific discovery, enabling frontier large language models (LLMs) to perform research
independently and communicate their findings. We introduce The AI Scientist, which generates
novel research ideas, writes code, executes experiments, visualizes results, describes its findings by
writing a full scientific paper, and then runs a simulated review process for evaluation. In principle,
this process can be repeated to iteratively develop ideas in an open-ended fashion and add them to
a growing archive of knowledge, acting like the human scientific community. We demonstrate the
versatility of this approach by applying it to three distinct subfields of machine learning: diffusion
modeling, transformer-based language modeling, and learning dynamics. Each idea is implemented
and developed into a full paper at a meager cost of less than $15 per paper, illustrating the potential for
our framework to democratize research and significantly accelerate scientific progress. To evaluate the
generated papers, we design and validate an automated reviewer, which we show achieves near-human
performance in evaluating paper scores. The AI Scientist can produce papers that exceed the
acceptance threshold at a top machine learning conference as judged by our automated reviewer. This
approach signifies the beginning of a new era in scientific discovery in machine learning: bringing
the transformative benefits of AI agents to the entire research process of AI itself, and taking us closer
to a world where endless affordable creativity and innovation can be unleashed on the world’s most
challenging problems. Our code is open-sourced at https://github.com/SakanaAI/AI-Scientist.

1. Introduction
The modern scientific method (Chalmers, 2013; Dewey, 1910; Jevons, 1877) is arguably one of the
greatest achievements of the Enlightenment. Traditionally, a human researcher collects background
knowledge, drafts a set of plausible hypotheses to test, constructs an evaluation procedure, collects
evidence for the different hypotheses, and finally assesses and communicates their findings. After-
ward, the resulting manuscript undergoes peer review and subsequent iterations of refinement. This
procedure has led to countless breakthroughs in science and technology, improving human quality
of life. However, this iterative process is inherently limited by human researchers’ ingenuity, back-
ground knowledge, and finite time. In the field of AI, researchers have envisioned the possibility of
automating AI research using AI itself (Schmidhuber, 1991, 2010a,b, 2012), leading to “AI-generating
algorithms” (Clune, 2019). More recently, foundation models have seen tremendous advances in
their general capabilities (Anthropic, 2024; Google DeepMind Gemini Team, 2023; Llama Team,
2024; OpenAI, 2023), but they have only been shown to accelerate individual parts of the research
pipeline, e.g. the writing of scientific manuscripts (Altmäe et al., 2023), as a muse to brainstorm
ideas (Girotra et al., 2023), or aides to coding (Gauthier, 2024). To date, the community has yet to
show the possibility of executing entire research endeavors without human involvement.
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Traditional approaches to automating research projects have so far relied on carefully constraining
the search space of potential discoveries, which severely limits the scope of exploration and requires
substantial human expertise and design. For example, significant advancements in materials dis-
covery (Merchant et al., 2023; Pyzer-Knapp et al., 2022) and synthetic biology (Hayes et al., 2024;
Jumper et al., 2021) have been achieved by restricting exploration to well-characterized domains
with predefined parameters, which allows for targeted progress but limits broader, open-ended
discovery and addressing only a subset of the scientific process, without encompassing tasks such as
manuscript preparation. Within the field of machine learning itself, research automation has largely
been restricted to hyperparameter and architecture search (He et al., 2021; Hutter et al., 2019; Lu
et al., 2022b; Wan et al., 2021, 2022) or algorithm discovery (Alet et al., 2020; Chen et al., 2024b;
Kirsch et al., 2019; Lange et al., 2023a,b; Lu et al., 2022a; Metz et al., 2022) within a hand-crafted
search space. Recent advances in LLMs have shown the potential to extend the search space to more
generalized, code-level solutions (Faldor et al., 2024; Lehman et al., 2022; Lu et al., 2024a; Ma
et al., 2023). However, these approaches remain constrained by rigorously-defined search spaces and
objectives, which limit the breadth and depth of possible discoveries.
In this paper, we introduce The AI Scientist, the first fully automated and scalable pipeline
for end-to-end paper generation, enabled by recent advances in foundation models. Given a broad
research direction and a simple initial codebase, The AI Scientist seamlessly performs ideation, a
literature search, experiment planning, experiment iterations, manuscript writing, and peer reviewing
to produce insightful papers. Furthermore, The AI Scientist can run in an open-ended loop,
building on its previous scientific discoveries to improve the next generation of ideas. This allows us to
speed up the slow nature of scientific iteration at a surprisingly low financial cost (∼$15/paper) and
represents a step towards turning the world’s ever-increasing computing resources into the scientific
breakthroughs needed to tackle the core challenges of the 21st century. Here, we focus on Machine
Learning (ML) applications, but this approach can more generally be applied to almost any other
discipline, e.g. biology or physics, given an adequate way of automatically executing experiments
(Arnold, 2022; Kehoe et al., 2015; Zucchelli et al., 2021).
By leveragingmodern LLM frameworks like chain-of-thought (Wei et al., 2022) and self-reflection (Shinn
et al., 2024) to improve decision-making, The AI Scientist is able to generate its own scientific
ideas and hypotheses, as well as a plan for testing them with experiments. Next, The AI Scientist
implements plan-directed code-level changes to the experiment “template” using the state-of-the-art
coding assistant Aider (Gauthier, 2024), and executes experiments to collect a set of computational
results, which are in turn used to draft a scientific paper. The AI Scientist then performs an
automated paper-reviewing process using guidelines from a standard machine learning conference.
Finally, The AI Scientist adds the completed ideas and reviewer feedback to its archive of
scientific findings, and the process repeats. Crucially, the generated paper and experimental artifacts
The AI Scientist produces allow us to easily interpret and judge its findings post-hoc, allowing
human scientists to also benefit from what is learned.
Our contributions are summarized as follows:
1. We introduce the first end-to-end framework for fully automated scientific discovery in Machine
Learning research, enabled by frontier LLMs (Section 3). This fully automated process includes
idea generation, experiment design, execution, and visualizing and writing up the results into a
full manuscript.

2. To assess the quality of the generated papers, we introduce a foundation model-based reviewing
process in Section 4. This process achieves near-human-level performance across multiple evalu-
ation metrics (e.g. 65% vs. 66% balanced accuracy) when evaluated on ICLR 2022 OpenReview
data. The reviews further enable The AI Scientist to select the best ideas for “publication”
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Figure 1 | Conceptual illustration of The AI Scientist, an end-to-end LLM-driven scientific discovery
process. The AI Scientist first invents and assesses the novelty of a set of ideas. It then determines how to
test the hypotheses, including writing the necessary code by editing a codebase powered by recent advances in
automated code generation. Afterward, the experiments are automatically executed to collect a set of results
consisting of both numerical scores and visual summaries (e.g. plots or tables). The results are motivated,
explained, and summarized in a LaTeX report. Finally, The AI Scientist generates an automated review,
according to current practice at standard machine learning conferences. The review can be used to either
improve the project or as feedback to future generations for open-ended scientific discovery.

to an ever-growing archive of scientific discoveries, and the process can be repeated to build on
these discoveries, just as in the human scientific community.

3. The AI Scientist can generate hundreds of interesting, medium-quality papers over the
course of a week. In this report, we focus on a subset of these papers, highlighting novel insights
in diffusion modeling, language modeling, and grokking. We perform an in-depth case study
into one selected paper in Section 5, and present aggregate results in Section 6.

4. We conclude the paper with an extensive discussion on the limitations, ethical considerations,
and future outlook of our approach in Sections 8 and 9.

2. Background
Large Language Models. In this paper, we build our automated scientist from autoregressive large
language models (LLMs, Anthropic (2023); Google DeepMind Gemini Team (2023); Llama Team
(2024); OpenAI (2023); Zhu et al. (2024)) which learn to generate text completions by modeling the
conditional probability of a new token (similar to a word) given the preceding tokens, 𝑝(𝑥𝑡 |𝑥<𝑡; 𝜃),
and sampling at test-time. Together with vast data and model scaling, this enables LLMs to not
only generate coherent text, but crucially also exhibit human-like abilities, including commonsense
knowledge (Talmor et al., 2019), reasoning (Wei et al., 2022), and the ability to write code (Chen
et al., 2021; Xu et al., 2022).
LLM Agent Frameworks. Typical applications of LLMs often involve embedding the model into
an “agent” (Wang et al., 2024) framework, including the following possibilities: the structuring of
language queries (e.g. few-shot prompting (Brown et al., 2020)), encouraging reasoning traces (e.g.
chain-of-thought (Wei et al., 2022)), or asking the model to iteratively refine its outputs (e.g., self-
reflection (Shinn et al., 2024)). These leverage the language model’s ability to learn in-context (Olsson
et al., 2022) and can greatly improve its performance, robustness and reliability on many tasks.
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Aider: An LLM-Based Coding Assistant. Our automated scientist directly implements ideas in code
and uses a state-of-the-art open-source coding assistant, Aider (Gauthier, 2024). Aider is an agent
framework that is designed to implement requested features, fix bugs, or refactor code in existing
codebases. While Aider can in principle use any underlying LLM, with frontier models it achieves a
remarkable success rate of 18.9% on the SWE Bench (Jimenez et al., 2024) benchmark, a collection
of real-world GitHub issues. In conjunction with new innovations added in this work, this level of
reliability enables us, for the first time, to fully automate the ML research process.

3. The AI Scientist
Overview. The AI Scientist has three main phases (Figure 1): (1) Idea Generation, (2) Ex-
perimental Iteration, and (3) Paper Write-up. After the write-up, we introduce and validate an
LLM-generated review to assess the quality of the generated paper (Section 4). We provide The AI
Scientist with a starting code template that reproduces a lightweight baseline training run from a
popular model or benchmark. For example, this could be code that trains a small transformer on the
works of Shakespeare (Karpathy, 2022), a classic proof-of-concept training run from natural language
processing that completes within a few minutes. The AI Scientist is then free to explore any
possible research direction. The template also includes a LaTeX folder that contains style files and
section headers, along with simple plotting code. We provide further details on the templates in
Section 6, but in general, each run starts with a representative small-scale experiment relevant to
the topic area. The focus on small-scale experiments is not a fundamental limitation of our method,
but simply for computational efficiency reasons and compute constraints on our end. We provide the
prompts for all stages in Appendix A.
1. Idea Generation. Given a starting template, The AI Scientist first “brainstorms” a diverse set
of novel research directions. We take inspiration from evolutionary computation and open-endedness
research (Brant and Stanley, 2017; Lehman et al., 2008; Stanley, 2019; Stanley et al., 2017) and
iteratively grow an archive of ideas using LLMs as the mutation operator (Faldor et al., 2024; Lehman
et al., 2022; Lu et al., 2024b; Zhang et al., 2024). Each idea comprises a description, experiment
execution plan, and (self-assessed) numerical scores of interestingness, novelty, and feasibility. At each
iteration, we prompt the language model to generate an interesting new research direction conditional
on the existing archive, which can include the numerical review scores from completed previous ideas.
We use multiple rounds of chain-of-thought (Wei et al., 2022) and self-reflection (Shinn et al., 2024)
to refine and develop each idea. After idea generation, we filter ideas by connecting the language
model with the Semantic Scholar API (Fricke, 2018) and web access as a tool (Schick et al., 2024).
This allows The AI Scientist to discard any idea that is too similar to existing literature.
2. Experiment Iteration. Given an idea and a template, the second phase of The AI Scientist
first executes the proposed experiments and then visualizes its results for the downstream write-up.
The AI Scientist uses Aider to first plan a list of experiments to run and then executes them
in order. We make this process more robust by returning any errors upon a failure or time-out (e.g.
experiments taking too long to run) to Aider to fix the code and re-attempt up to four times.
After the completion of each experiment, Aider is then given the results and told to take notes in
the style of an experimental journal. Currently, it only conditions on text but in future versions, this
could include data visualizations or any modality. Conditional on the results, it then re-plans and
implements the next experiment. This process is repeated up to five times. Upon completion of
experiments, Aider is prompted to edit a plotting script to create figures for the paper using Python.
The AI Scientist makes a note describing what each plot contains, enabling the saved figures
and experimental notes to provide all the information required to write up the paper. At all steps,
Aider sees its history of execution.
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Note that, in general, the provided initial seed plotting and experiment templates are small, self-
contained files. The AI Scientist frequently implements entirely new plots and collects new
metrics that are not in the seed templates. This ability to arbitrarily edit the code occasionally leads
to unexpected outcomes (Section 8).
3. Paper Write-up. The third phase of The AI Scientist produces a concise and informative
write-up of its progress in the style of a standard machine learning conference proceeding in LaTeX.
We note that writing good LaTeX can even take competent human researchers some time, so we take
several steps to robustify the process. This consists of the following:
(a) Per-Section Text Generation: The recorded notes and plots are passed to Aider, which is
prompted to fill in a blank conference template section by section. This goes in order of
introduction, background, methods, experimental setup, results, and then the conclusion (all
sections apart from the related work). All previous sections of the paper it has already written
are in the context of the language model. We include brief tips and guidelines on what each
section should include, based on the popular “How to ML Paper” guide, and include details in
Appendix A.3. At each step of writing, Aider is prompted to only use real experimental results in
the form of notes and figures generated from code, and real citations to reduce hallucination. Each
section is initially refined with one round of self-reflection (Shinn et al., 2024) as it is being
written. Aider is prompted to not include any citations in the text at this stage, and fill in only a
skeleton for the related work, which will be completed in the next stage.

(b) Web Search for References: In a similar vein to idea generation, The AI Scientist is
allowed 20 rounds to poll the Semantic Scholar API looking for the most relevant sources to
compare and contrast the near-completed paper against for the related work section. This
process also allows The AI Scientist to select any papers it would like to discuss and
additionally fill in any citations that are missing from other sections of the paper. Alongside
each selected paper, a short description is produced of where and how to include the citation,
which is then passed to Aider. The paper’s bibtex is automatically appended to the LaTeX file to
guarantee correctness.

(c) Refinement: After the previous two stages, The AI Scientist has a completed first draft,
but can often be overly verbose and repetitive. To resolve this, we perform one final round of
self-reflection section-by-section, aiming to remove any duplicated information and streamline
the arguments of the paper.

(d) Compilation: Once the LaTeX template has been filled in with all the appropriate results, this
is fed into a LaTeX compiler. We use a LaTeX linter and pipe compilation errors back into Aider
so that it can automatically correct any issues.

4. Automated Paper Reviewing
An LLM Reviewer Agent. A key component of an effective scientific community is its reviewing
system, which evaluates and improves the quality of scientific papers. To mimic such a process using
large language models, we design a GPT-4o-based agent (OpenAI, 2023) to conduct paper reviews
based on the Neural Information Processing Systems (NeurIPS) conference review guidelines. The
review agent processes the raw text of the PDF manuscript using the PyMuPDF parsing library. The
output contains numerical scores (soundness, presentation, contribution, overall, confidence), lists of
weaknesses and strengths as well as a preliminary binary decision (accept or reject). These decisions
may then be post-calibrated by thresholding using the reviewer score. We leverage this automated
reviewing process to obtain an initial evaluation of the papers generated by The AI Scientist.
We provide the entire reviewing prompt template in Appendix A.4.
1Numbers are calculated based of the NeurIPS consistency experiment (Beygelzimer et al., 2021).

5

https://docs.google.com/document/d/16R1E2ExKUCP5SlXWHr-KzbVDx9DBUclra-EbU8IB-iE/edit#heading=h.16t67gkeu9dx
https://neurips.cc/Conferences/2022/ReviewerGuidelines


The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery

Table 1 | Performance of The AI Scientist’s automated LLM reviewing system on 500
ICLR 2022 papers. We show mean and 95% bootstrap confidence intervals, and highlight the
comparison between the human baseline and our best AI reviewer.

Reviewer Balanced Acc. ↑ Accuracy ↑ F1 Score ↑ AUC ↑ FPR ↓ FNR ↓
Human (NeurIPS)1 0.66 0.73 0.49 0.65 0.17 0.52
Random Decision 0.50 0.50 0.40 0.50 0.50 0.50
Always Reject 0.50 0.59 0.00 0.50 0.00 1.00

Uncalibrated
Sonnet 3.5 0.52 ± 0.01 0.40 ± 0.01 0.55 ± 0.01 0.52 ± 0.01 0.95 ± 0.02 0.00 ± 0.00
GPT-4o-mini 0.53 ± 0.02 0.65 ± 0.01 0.11 ± 0.06 0.53 ± 0.02 0.01 ± 0.01 0.94 ± 0.04
GPT-4o (0-shot) 0.61 ± 0.04 0.68 ± 0.03 0.43 ± 0.07 0.61 ± 0.04 0.11 ± 0.03 0.67 ± 0.07
GPT-4o (1-shot) 0.60 ± 0.03 0.70 ± 0.03 0.37 ± 0.08 0.60 ± 0.03 0.04 ± 0.02 0.76 ± 0.06

Calibrated
Sonnet 3.5@8 0.59 ± 0.04 0.65 ± 0.04 0.45 ± 0.06 0.59 ± 0.04 0.20 ± 0.04 0.61 ± 0.07
GPT-4o-mini@6 0.59 ± 0.04 0.64 ± 0.04 0.45 ± 0.06 0.59 ± 0.04 0.22 ± 0.05 0.60 ± 0.07
GPT-4o (0-shot) @6 0.63 ± 0.04 0.63 ± 0.04 0.56 ± 0.05 0.63 ± 0.04 0.38 ± 0.05 0.36 ± 0.07
GPT-4o (1-shot) @6 0.65 ± 0.04 0.66 ± 0.04 0.57 ± 0.05 0.65 ± 0.04 0.31 ± 0.05 0.39 ± 0.07

Evaluating the Automated Reviewer. To evaluate the LLM-based reviewer’s performance, we com-
pared the artificially generated decisions with ground truth data for 500 ICLR 2022 papers extracted
from the publicly available OpenReview dataset (Berto, 2024). Similar to the previous section, we
combine many recent advancements in LLM agents to make the decision-making process robust. More
specifically, we improve the base LLM’s decision-making process by leveraging self-reflection (Shinn
et al., 2024), providing few-shot examples (Wei et al., 2022) and response ensembling (Wang et al.,
2022). With GPT-4o, The AI Scientist’s reviewing procedure achieves 70% accuracy when
combining 5 rounds of self-reflection, 5 ensembled reviews, and a 1-shot review example taken from
the ICLR 2022 review guidelines. Afterward, we perform an LLM-based meta-review, which prompts
the agent to act as an Area Chair (Wang et al., 2022) (full prompts in Appendix A.4). While this
number is lower than the 73% accuracy that was reported for humans in the NeurIPS 2021 consistency
experiment (Beygelzimer et al., 2021), the automated reviewer achieves superhuman F1 Scores (0.57
vs. 0.49) and human-level AUC (0.65 for both) when thresholding the decision at a score of 6 (a
“Weak Accept” in the NeurIPS review guidelines). This choice corresponds roughly to the average
score of accepted papers.
The considered ICLR 2022 paper dataset is very class-imbalanced, i.e. it contains many more rejected
papers. When considering a balanced dataset of papers, The AI Scientist’s reviewing process
achieves human-level accuracy (0.65% vs. 0.66%). Furthermore, the False Negative Rate (FNR) is
much lower than the human baseline (0.39 vs. 0.52). Hence, the LLM-based review agent rejects
fewer high-quality papers. The False Positive Rate (FNR), on the other hand, is higher (0.31 vs. 0.17)
highlighting room for potential future improvements.
To further validate the performance of the automated reviewer, we compare the consistency of the
overall paper scores between anonymous OpenReview reviewers randomly sampled pairwise per
paper (Figure 2, bottom-left) and between the average of all reviewers and the LLM score (Figure 2,
bottom-middle). For the set of 500 ICLR 2022 papers, we find that the correlation between the score
of two human reviewers is smaller (0.14) than the correlation between the LLM score and the average
score across the reviewers (0.18). Overall, across all metrics, the results suggest that LLM-based
reviews can not only provide valuable feedback (Zheng et al., 2024) but also align more closely with
the average human reviewer score than individual human reviewers align with each other.
Each review is generated for $0.25 to $0.50 in API costs. We additionally compared the reviewing
performance of various other foundation models. While Claude Sonnet 3.5 (Anthropic, 2024) and GPT-
4o-mini provide a more cost-efficient approach, their performance was substantially worse (Table 1).
Moreover, we had to threshold scores at 8 for Sonnet 3.5 to obtain calibrated results, due to persistent
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Figure 2 | Evaluation of The AI Scientist’s paper reviewing process on ICLR 2022 OpenReview Data
using GPT-4o. Adding Reflexion and one-shot prompting improves the accuracy of the LLM-Based Reviewing
Process. Review ensembling (5 reviews) and subsequent meta-aggregation, on the other hand, did not affect
the reviewer’s performance, but can reduce variance.

over-optimism bias. Llama 3.1 405B (Llama Team, 2024) struggled to follow the reviewer output
template consistently. We open-source our code, providing a new and interesting LLM benchmark for
the community.
LLM Reviewer Ablations. We compare various prompt configurations for GPT-4o and find that both
Reflexion (+2%) and one-shot prompting (+2%) substantially help with performing more accurate
reviewing (Figure 2, top and bottom-right). On the other hand, using review ensembling does not
appear to improve the reviewer’s performance substantially but can reduce variance. In the following
sections, we used our best overall reviewer: GPT-4o with 5 rounds of self-reflection, 5 ensembled
reviews, a meta-aggregation step, and 1 few-shot example.

5. In-Depth Case Study
Before we present extensive experiments and metrics for The AI Scientist’s generated papers in
Section 6, we first visualize a representative sample from a run of the The AI Scientist which
illustrates both its strengths and shortcomings, followed by a broader discussion of its potential. The
selected paper “Adaptive Dual-Scale Denoising” is generated from a run where The AI Scientist is
asked to do research on diffusion modeling, which is fully detailed in Section 6.1. The base foundation
model was Claude Sonnet 3.5 (Anthropic, 2024).
Generated Idea. As discussed in Section 3, The AI Scientist first generates an idea based on
the provided template and its previous archive of discoveries. The idea in the selected paper was
proposed in the 6th iteration of the algorithm and aims to improve the ability of diffusion models
to capture both global structure and local details in a 2D dataset, by proposing two branches in the
standard denoiser network. This is a well-motivated direction that has been the primary reason for
researchers adopting diffusion models over prior styles of generative models such as VAEs (Kingma
and Welling, 2014) and GANs (Goodfellow et al., 2014), and to the best of our knowledge has not
been widely studied.
We highlight that The AI Scientist generates an impressive experimental plan that includes the
proposed code modification, comparison to baselines, evaluation metrics, and the design of additional
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plots. As has been previously observed in the literature, judgments by LLMs can often have bias (Zheng
et al., 2024) which we can observe in over-estimation of an idea’s interestingness, feasibility, or novelty.
The “novel” flag at the end indicates The AI Scientist believes the idea is novel after searching
for related papers using the Semantic Scholar API.

Idea - adaptive_dual_scale_denoising

"Name": "adaptive_dual_scale_denoising",
"Title": "Adaptive Dual-Scale Denoising for Dynamic Feature Balancing in
Low-Dimensional Diffusion Models",
"Experiment": "Modify MLPDenoiser to implement a dual-scale processing
approach with two parallel branches: a global branch for the original input
and a local branch for an upscaled input. Introduce a learnable, timestep-
conditioned weighting factor to dynamically balance the contributions of
global and local branches. Train models with both the original and new
architecture on all datasets. Compare performance using KL divergence and
visual inspection of generated samples. Analyze how the weighting factor
evolves during the denoising process and its impact on capturing global
structure vs. local details across different datasets and timesteps.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 8,
"novel": true

Generated Experiments. We display the generated code diff (deletions are in red, and additions
are in green) for the substantial algorithmic changes below. The code matches the experimental
description and is well-commented. The AI Scientist is able to iterate on the code with results
from intermediate experiments in the loop, and it eventually ends up with interesting design choices
for the adaptive weight network, e.g. a LeakyReLU. Importantly, this network has a well-behaved
output that is guaranteed to be between 0 and 1. We additionally note that The AI Scientist
changed the output of the network to return the adaptive weights to make new visualizations.

@@ -60,19 +60,55 @@ class MLPDenoiser(nn.Module):
self.input_mlp1 = SinusoidalEmbedding(embedding_dim, scale=25.0)
self.input_mlp2 = SinusoidalEmbedding(embedding_dim, scale=25.0)

- self.network = nn.Sequential(
+ self.global_network = nn.Sequential(

nn.Linear(embedding_dim * 3, hidden_dim),
*[ResidualBlock(hidden_dim) for _ in range(hidden_layers)],
nn.ReLU(),
nn.Linear(hidden_dim, 2),

)

+ self.local_network = nn.Sequential(
+ nn.Linear(embedding_dim * 3, hidden_dim),
+ *[ResidualBlock(hidden_dim) for _ in range(hidden_layers)],
+ nn.ReLU(),
+ nn.Linear(hidden_dim, 2),
+ )
+
+ self.upscale = nn.Linear(2, 4)
+ self.downscale = nn.Linear(2, 2)
+
+ # Modify the weight network to have an additional hidden layer and use LeakyReLU
+ self.weight_network = nn.Sequential(
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+ nn.Linear(embedding_dim, hidden_dim),
+ nn.LeakyReLU(0.2),
+ nn.Linear(hidden_dim, hidden_dim // 2),
+ nn.LeakyReLU(0.2),
+ nn.Linear(hidden_dim // 2, 2),
+ nn.Softmax(dim=-1) # Ensure weights sum to 1
+ )
+

def forward(self, x, t):
x1_emb = self.input_mlp1(x[:, 0])
x2_emb = self.input_mlp2(x[:, 1])
t_emb = self.time_mlp(t)

- emb = torch.cat([x1_emb, x2_emb, t_emb], dim=-1)
- return self.network(emb)
+ global_emb = torch.cat([x1_emb, x2_emb, t_emb], dim=-1)
+
+ # Global branch
+ global_output = self.global_network(global_emb)
+
+ # Local branch with upscaling
+ x_upscaled = self.upscale(x)
+ x1_upscaled_emb = self.input_mlp1(x_upscaled[:, 0])
+ x2_upscaled_emb = self.input_mlp2(x_upscaled[:, 1])
+ local_emb = torch.cat([x1_upscaled_emb, x2_upscaled_emb, t_emb], dim=-1)
+ local_output = self.local_network(local_emb)
+
+ # Calculate dynamic weights based on timestep
+ weights = self.weight_network(t_emb)
+
+ # Combine global and local outputs with learnable weighting
+ output = weights[:, 0].unsqueeze(1) * global_output + weights[:, 1].unsqueeze(1)

* local_output↩→
+ return output, weights

Generated Paper. The AI Scientist generates an 11-page scientific manuscript in the style of
a standard machine learning conference submission complete with visualizations and all standard
sections. We display a preview of the completely AI-generated paper in Figure 3, with the full-sized
version available in Appendix D.1.
We highlight specific things that were particularly impressive in the paper:
• Precise Mathematical Description of the Algorithm. The algorithmic changes in the code
above are described precisely, with new notation introduced where necessary, using LaTeX math
packages. The overall training process is also described exactly.

• Comprehensive Write-up of Experiments. The hyperparameters, baselines, and datasets are
listed in the paper. As an essential sanity check, we verified that the main numerical results in
Table 1 of the generated paper exactly match the experimental logs. Impressively, while the
recorded numbers are in long-form floats, The AI Scientist chooses to round them all to 3
decimal places without error. Even more impressively, the results are accurately compared to
the baseline (e.g. 12.8% reduction in KL on the dinosaur dataset).

• Good Empirical Results. Qualitatively, the sample quality looks much improved from the
baseline. Fewer points are greatly out-of-distribution with the ground truth. Quantitatively, there
are improvements to the approximate KL divergence between true and estimated distribution.

• New Visualizations. While we provided some baseline plotting code for visualizing generated
samples and the training loss curves, it came up with novel algorithm-specific plots displaying
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Figure 3 | Preview of the “Adaptive Dual-Scale Denoising” paper which was entirely autonomously generated
by The AI Scientist. The full paper can be viewed in Appendix D.1

the progression of weights throughout the denoising process.
• Interesting Future Work Section. Building on the success of the current experiments, the
future work section lists relevant next steps such as scaling to higher-dimensional problems,
more sophisticated adaptive mechanisms, and better theoretical foundations.

On the other hand, there are also pathologies in this paper:
• Lack of Justification of Certain Design Choices. The local branch of the denoiser network
operates on an upscaled version of the original input with double the original dimensionality.
Whilst this matches the code, there is no discussion on why this is reasonable, and a more
rigorous paper would provide ablations on this.

• Hallucination of Experimental Details. The paper claims that V100 GPUs were used, even
though the agent couldn’t have known the actual hardware used. In reality, H100 GPUs were
used. It also guesses the PyTorch version without checking.

• Positive Interpretation of Results. The paper tends to take a positive spin even on its negative
results, which leads to slightly humorous outcomes. For example, while it summarizes its
positive results as: “Dino: 12.8% reduction (from 0.989 to 0.862)” (lower KL is better), the
negative results are reported as “Moons: 3.3% improvement (from 0.090 to 0.093)”. Describing
a negative result as an improvement is certainly a stretch of the imagination.

• Artifacts from Experimental Logs. While each change to the algorithm is usually descriptively
labeled, it occasionally refers to results as “Run 2”, which is a by-product from its experimental
log and should not be presented as such in a professional write-up.

• Presentation of Intermediate Results. The paper contains results for every single experiment
that was run. While this is useful and insightful for us to see the evolution of the idea during
execution, it is unusual for standard papers to present intermediate results like this.

• Minimal References. While additional references have been sourced from Semantic Scholar,
including two papers in the related work that are very relevant comparisons, overall the
bibliography is small at only 9 entries.

Review. The automated reviewer points out valid concerns in the generated manuscript. The review
recognizes the experiments were with simple, 2D datasets only, however, this is because we externally
constrained the system to use these datasets, and in its current form, The AI Scientist cannot
download higher-dimensional datasets from the internet. On the other hand, limitations such as
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the proposed algorithm’s increased computational cost of the algorithm are mentioned in the actual
paper, which shows that The AI Scientist is often up-front about the drawbacks of its idea. The
reviewer also lists many relevant questions about the paper, such as: explaining the variability of
performance across datasets, and explaining in more detail how the upscaling process affects the
local branch’s input.

Review - adaptive_dual_scale_denoising

"Summary": "The paper introduces an adaptive dual-scale denoising approach
for low-dimensional diffusion models, aiming to balance global structure
and local details in generated samples. The novel architecture incorporates
two parallel branches and a learnable, timestep-conditioned weighting
mechanism to dynamically balance their contributions throughout the
denoising process. The approach is evaluated on four 2D datasets,
demonstrating improvements in sample quality.",
"Strengths": [

"Novel approach to balancing global and local features in diffusion
models for low-dimensional data.",

"Comprehensive empirical evaluation on multiple 2D datasets.",
"Adaptive weighting mechanism that dynamically adjusts focus during

denoising."
],
"Weaknesses": [

"Lacks detailed theoretical justification for the dual-scale
architecture.",

"Computational cost is significantly higher, which may limit practical
applicability.",

"Some sections are not clearly explained, such as the autoencoder
aggregator and weight evolution analysis.",

"Limited diversity in the datasets used for evaluation. More complex,
real-world datasets could strengthen claims.",

"Insufficient ablation studies and analysis on specific design choices
like different types of aggregators."
],
"Originality": 4,
"Quality": 3,
"Clarity": 3,
"Significance": 3,
"Questions": [

"Can you provide a more detailed theoretical justification for the
dual-scale architecture?",

"What impact do different types of aggregators have on the model's
performance?",

"How does the model perform on more complex, real-world low-dimensional
datasets?",

"Can the computational cost be reduced without sacrificing
performance?"
],
"Limitations": [

"The paper should address the high computational cost and explore ways
to optimize it.",

"The limited diversity of datasets and lack of detailed theoretical
backing for the proposed architecture are notable limitations."
],
"Ethical Concerns": false,
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"Soundness": 3,
"Presentation": 3,
"Contribution": 3,
"Overall": 5,
"Confidence": 4,
"Decision": "Reject"

Final Comments. Drawing from our domain knowledge in diffusion modeling—which, while not
our primary research focus, is an area in which we have published papers—we present our overall
opinions on the paper generated by The AI Scientist below.
• The AI Scientist correctly identifies an interesting and well-motivated direction in diffusion
modeling research, e.g. previous work has studiedmodified attentionmechanisms (Hatamizadeh
et al., 2024) for the same purpose in higher-dimensional problems. It proposes a comprehensive
experimental plan to investigate its idea, and successfully implements it all, achieving good
results. We were particularly impressed at how it responded to subpar earlier results and
iteratively adjusted its code (e.g. refining the weight network). The full progression of the idea
can be viewed in the paper.

• While the paper’s idea improves performance and the quality of generated diffusion samples,
the reasons for its success may not be as explained in the paper. In particular, there is no obvious
inductive bias beyond an upscaling layer for the splitting of global or local features. However,
we do see progression in weights (and thus a preference for the global or local branch) across
diffusion timesteps which suggests that something non-trivial is happening. Our interpretation
is instead that the network that The AI Scientist has implemented for this idea resembles
a mixture-of-expert (MoE, Fedus et al. (2022); Yuksel et al. (2012)) structure that is prevalent
across LLMs (Jiang et al., 2024). An MoE could indeed lead to the diffusion model learning
separate branches for global and local features, as the paper claims, but this statement requires
more rigorous investigation.

• Interestingly, the true shortcomings of this paper described above certainly require some level
of domain knowledge to identify and were only partially captured by the automated reviewer
(i.e., when asking for more details on the upscaling layer). At the current capabilities of The
AI Scientist, this can be resolved by human feedback. However, future generations of
foundation models may propose ideas that are challenging for humans to reason about and
evaluate. This links to the field of “superalignment” (Burns et al., 2023) or supervising AI
systems that may be smarter than us, which is an active area of research.

• Overall, we judge the performance of The AI Scientist to be about the level of an early-stage
ML researcher who can competently execute an idea but may not have the full background
knowledge to fully interpret the reasons behind an algorithm’s success. If a human supervisor
was presented with these results, a reasonable next course of action could be to advise The
AI Scientist to re-scope the project to further investigate MoEs for diffusion. Finally, we
naturally expect that many of the flaws of the The AI Scientist will improve, if not be
eliminated, as foundation models continue to improve dramatically.

6. Experiments
We extensively evaluate The AI Scientist on three templates (as described in Section 3) across
different publicly available LLMs: Claude Sonnet 3.5 (Anthropic, 2024), GPT-4o (OpenAI, 2023),
DeepSeek Coder (Zhu et al., 2024), and Llama-3.1 405b (Llama Team, 2024). The first two models
are only available by a public API, whilst the second two models are open-weight. For each run, we
provide 1-2 basic seed ideas as examples (e.g. modifying the learning rate or batch size) and have it
generate another 50 new ideas. We visualize an example progression of proposed ideas in Appendix C.
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Each run of around fifty ideas in total takes approximately 12 hours on 8× NVIDIA H100s2. We
report the number of ideas that pass the automated novelty check, successfully complete experiments,
and result in valid compilable manuscripts. Note that the automated novelty check and search are
self-assessed by each model for its own ideas, making relative “novelty” comparisons challenging.
Additionally, we provide the mean and max reviewer scores of the generated papers and the total
cost of the run. Finally, we select and briefly analyze some of the generated papers, which are listed
below. The full papers can be found in Appendix D, alongside the generated reviews and code.
In practice, we make one departure from the formal description of The AI Scientist, and generate
ideas without waiting for paper evaluations to be appended to the archive in order to parallelize more
effectively. This allowed us to pay the cost of the idea generation phase only once and iterate faster;
furthermore, we did not observe any reduction in the quality of the papers generated as measured by
the average review score with this modification.

Table 2 | 10 selected papers generated by The AI Scientist.

Type Paper Title Score

2D Diffusion DualScale Diffusion: Adaptive Feature Balancing for Low-Dimensional Generative Models 5
2D Diffusion Multi-scale Grid Noise Adaptation: Enhancing Diffusion Models For Low-dimensional Data 4
2D Diffusion GAN-Enhanced Diffusion: Boosting Sample Quality and Diversity 3
2D Diffusion DualDiff: Enhancing Mode Capture in Low-dimensional Diffusion Models via Dual-expert Denoising 5
NanoGPT StyleFusion: Adaptive Multi-style Generation in Character-Level Language Models 5
NanoGPT Adaptive Learning Rates for Transformers via Q-Learning 3
Grokking Unlocking Grokking: A Comparative Study of Weight Initialization Strategies in Transformer Models 5
Grokking Grokking Accelerated: Layer-wise Learning Rates for Transformer Generalization 4
Grokking Grokking Through Compression: Unveiling Sudden Generalization via Minimal Description Length 3
Grokking Accelerating Mathematical Insight: Boosting Grokking Through Strategic Data Augmentation 5

From manual inspection, we find that Claude Sonnet 3.5 consistently produces the highest quality
papers, with GPT-4o coming in second. We provide a link to all papers, run files, and logs in our
GitHub repository, and recommend viewing the uploaded Claude papers for a qualitative analysis.
This observation is also validated by the scores obtained from the LLM reviewer (Figure 4). When
dividing the number of generated papers by the total cost, we end up at a cost of around $10-15 per
paper. Notably, GPT-4o struggles with writing LaTeX, which prevents it from completing many of
its papers. For the open-weight models, DeepSeek Coder is significantly cheaper but often fails to
correctly call the Aider tools. Llama-3.1 405b performed the worst overall but was the most convenient
to work with, as we were frequently rate-limited by other providers. Both DeepSeek Coder and
Llama-3.1 405b often had missing sections and results in their generated papers. In the following
subsections, we will describe each template, its corresponding results, and specific papers.

6.1. Diffusion Modeling

Table 3 | Evaluation of automated AI Scientist paper generation for Diffusion Modeling.

Total
Ideas

Novel
Ideas

Experiments
Passed

Completed
Papers

Mean
Score

Max
Score

Total
Cost

Sonnet 3.5 51 49 38 38 3.82 6.0 ∼$250
GPT-4o 51 41 17 16 3.70 5.0 ∼$300
DeepSeek Coder 51 42 32 31 3.32 5.0 ∼$10
Llama-3.1 405b 51 31 21 21 2.30 3.0 ∼$120

2Note that the experiment templates are very small-scale and are not compute-intensive. They would likely take a
similar amount of time on cheaper GPUs, as we do not achieve high utilization.
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Figure 4 | Violin plots showing the distribution of scores generated by the The AI Scientist reviewer for
AI-generated papers across three domains and four foundation models. Scores on the y-axis refer to NeurIPS
ratings, which range from 2 (Strong Reject) to 6 (Weak Accept).

General Description: This template studies improving the performance of diffusion generative
models (Ho et al., 2020; Sohl-Dickstein et al., 2015) on low-dimensional datasets. Compared to image
generation, low-dimensional diffusion is much less well-studied, and thus there may be interesting
algorithmic contributions to be made here.
Code Template: We base this template on a modified version of the popular ‘tanelp/tiny-diffusion’
repository (Pärnamaa, 2023) with additional minor hyperparameter tuning added and exponential
moving average on the weights. The diffusion models are DDPM (Ho et al., 2020) models trained to
generate samples from four distributions including geometric shapes, the two moons dataset, and
a 2D dinosaur. The denoiser network is parameterized as an MLP with sinusoidal embeddings for
the diffusion timestep and input data. The plotting script visualizes generated samples and plots
training loss by default. Estimated KL is provided as an additional metric for sample quality via
non-parametric entropy estimation.
Highlighted Generated Paper 1: DualScale Diffusion: Adaptive Feature Balancing for Low-
Dimensional Generative Models. We analyze this paper in-depth in Section 5. This paper proposes
a dual-scale denoising approach that splits the traditional diffusion denoiser into a global and a
local processing branch. The network input is upscaled before being fed into the local branch.
The outputs of the branches are then combined using a learnable time-conditioned weighting. It
achieves impressive quantitative and qualitative results. It further manages to plot the evolution of
the weighting across time, which requires very significant deviation from the provided code.
Highlighted Generated Paper 2: Multi-scale Grid Noise Adaptation: Enhancing Diffusion Models
For Low-dimensional Data. This paper proposes to dynamically scale the standard diffusion noise
schedule with a learned multiplicative factor based on where a particular input is in 2D space. The
multiplicative factor is set by two grids that cover the input space, one coarse 5x5 grid and one more
fine-grained 20x20 grid. This creative approach allows the diffusion model to dramatically improve
performance across the datasets.
Highlighted Generated Paper 3: GAN-Enhanced Diffusion: Boosting Sample Quality and Di-
versity. This paper, inspired by GANs, proposes adding a discriminator to the diffusion model to
guide the generation. It achieves comparable quantitative performance to the baseline, however, the
final generated figures appear to have fewer out-of-distribution points. This is notable as the current
version of The AI Scientist is unable to view them (a problem that can be remedied by using
multi-modal models in the future).
Highlighted Generated Paper 4: DualDiff: Enhancing Mode Capture in Low-dimensional Diffu-
sion Models via Dual-expert Denoising. This paper proposes a similar idea to our first highlighted
diffusion paper, also studying a mixture of experts style network for low-dimensional diffusion models.
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However, this idea evolves differently, with the standard diffusion loss now being augmented with a
loss that encourages diversity in the two experts. The paper impressively visualizes the impact of the
diversity loss in distributing inputs across both experts and further color-codes which parts of the
sample space each expert is specialized in. We were particularly impressed by The AI Scientist’s
ability to perform a radically different take on a similar idea.

6.2. Language Modeling

Table 4 | Evaluation of automated AI Scientist paper generation for Language Modeling.

Total
Ideas

Novel
Ideas

Experiments
Passed

Completed
Papers

Mean
Score

Max
Score

Total
Cost

Sonnet 3.5 52 50 20 20 4.05 5.0 ∼$250
GPT-4o 52 44 30 16 3.25 5.0 ∼$300
DeepSeek Coder 52 37 23 23 3.21 4.0 ∼$10
Llama-3.1 405b 52 41 21 21 2.31 3.0 ∼$120

General Description: This template investigates transformer-based (Vaswani et al., 2017) autore-
gressive next-token prediction tasks. Because this task is widely studied and optimized, it is difficult
for The AI Scientist to find significant improvements. There are some common failure modes
for this template that result in impressive-looking, but deceptive results. For example, a few of
its ideas effectively cheat by subtly leaking information from future tokens, which results in lower
perplexity.
Code Template: The code is modified from the popular NanoGPT repository (Karpathy, 2022). The
provided script template trains a small transformer language model on the character-level Shakespeare
dataset (Karpathy, 2015), the enwik8 dataset (Hutter, 2006), and the text8 dataset (Mahoney, 2011).
It runs three seeds on the Shakespeare dataset, and one each on the remaining ones. The code
saves the runtime, validation losses, and train losses. The plotting script visualizes training curves by
default.
Highlighted Generated Paper 1: StyleFusion: Adaptive Multi-style Generation in Character-Level
Language Models. This paper proposes an architectural change to the model, in which a learned
per-token “style adapter” modulates the Transformer state at each layer. The method achieves strong
results and deserves further investigation, though we suspect that one reason it may work is that
it is simply adding more parameters, which may trivialize the result. Furthermore, it omits some
important implementation details in the writing, such as how the style loss labels are derived (which
appear to be randomly assigned on each update step).
Highlighted Generated Paper 2: Adaptive Learning Rates in Transformers via Q-Learning. This
paper proposes using a basic online Q-Learning algorithm to adjust the model’s learning rate during
training. The state consists of the current learning rate and validation loss, the action applies a small
perturbation to the learning rate, and the reward is the negative change in validation loss. While the
idea is creative, it seems inappropriate to use simple Q-Learning in this highly non-stationary and
partially-observed environment. Nonetheless, it happens to achieve effective results.

6.3. Grokking Analysis
General Description: This template investigates questions about generalization and learning speed
in deep neural networks. We follow the classic experimental paradigm reported in Power et al. (2022)
for analyzing “grokking”, a poorly understood phenomenon in which validation accuracy dramatically
improves long after the train loss saturates. We provide code that generates synthetic datasets of
modular arithmetic tasks and then trains a Transformer model on them. Unlike the previous templates,
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Table 5 | Evaluation of automated AI Scientist paper generation for Grokking.

Total
Ideas

Novel
Ideas

Experiments
Passed

Completed
Papers

Mean
Score

Max
Score

Total
Cost

Sonnet 3.5 51 47 25 25 3.44 5.0 ∼$250
GPT-4o 51 51 22 13 2.92 3.0 ∼$300
DeepSeek Coder 51 46 38 36 3.13 4.0 ∼$10
Llama-3.1 405b 51 36 30 30 2.00 3.0 ∼$120

this one is more amenable to open-ended empirical analysis (e.g. what conditions grokking occurs)
rather than just trying to improve performance metrics.
Code Template: We base our implementation off of two popular open source re-implementations (May,
2022; Snell, 2021) of Power et al. (2022). The code generates four synthetic datasets of modular
arithmetic tasks and trains a transformer on each across three random seeds. It returns train losses,
validation losses, and the number of update steps required to reach perfect validation accuracy. The
plotting scripts visualize the training and validation curves by default.
Highlighted Generated Paper 1: Unlocking Grokking: A Comparative Study of Weight Initial-
ization Strategies in Transformer Models. This paper investigates different weight initializations
and their impact on grokking. It finds that Xavier (Glorot and Bengio, 2010) and Orthogonal weight
initializations consistently result in significantly faster grokking on the tasks than the widely-used
default baseline weight initializations (Kaiming Uniform and Kaiming Normal). While this is a basic
investigation, it provides an interesting result that could be studied in more depth. The paper also
has a creative and catchy title.
Highlighted Generated Paper 2: Grokking Accelerated: Layer-wise Learning Rates for Trans-
former Generalization. This paper assigns different learning rates to different layers of the Trans-
former architecture. It finds that increasing the learning rate for higher layers results in significantly
faster and more consistent grokking after iterating through different configurations throughout its
experiments. It impressively includes the key section of its implementation in the write-up.
Highlighted Generated Paper 3: Grokking Through Compression: Unveiling Sudden General-
ization via Minimal Description Length. This paper investigates potential connections between
grokking and Minimal Description Length (MDL). We believe this idea is particularly interesting,
though not executed very well. Its method for measuring MDL simply involves counting the number of
parameters above a threshold 𝜖. While this does end up correlating with grokking, it is not analyzed
in much depth. The paper could be significantly improved by investigating other estimates of MDL
and including basic ablations. Furthermore, The AI Scientist failed to write the Related Works
section and hallucinated a plot (Figure 5).
Highlighted Generated Paper 4: Accelerating Mathematical Insight: Boosting Grokking Through
Strategic Data Augmentation. This paper investigates data augmentation techniques for grokking in
modular arithmetic. It comes up with valid and creative augmentation techniques (operand reversal
and operand negation) and finds that they can significantly accelerate grokking. While it is not
surprising that data augmentation can improve generalization, the experiments and ideas seem
generally well-executed. However, The AI Scientist once again failed to write the Related Works
section. In principle, this failure may be easily remedied by simply running the paper write-up step
multiple times.
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7. Related Work
While there has been a long tradition of automatically optimizing individual parts of the ML pipeline
(AutoML, He et al. (2021); Hutter et al. (2019)), none come close to the full automation of the entire
research process, particularly in communicating obtained scientific insights in an interpretable and
general format.
LLMs for Machine Learning Research. Most closely related to our work are those that use LLMs
to assist machine learning research. Huang et al. (2024) propose a benchmark for measuring how
successfully LLMs can write code to solve a variety of machine learning tasks. Lu et al. (2024a) use
LLMs to propose, implement, and evaluate new state-of-the-art algorithms for preference optimization.
Liang et al. (2024) use LLMs to provide feedback on research papers and find that they provide similar
feedback to human reviewers, while Girotra et al. (2023) find that LLMs can consistently produce
higher quality ideas for innovation than humans. Our work can be seen as the synthesis of all these
distinct threads, together with paper writing; resulting in a single autonomous open-ended system
that can produce novel machine learning research.
LLMs for Structured Exploration. Because LLMs contain many human-relevant priors, they are
commonly used as a tool to explore large search spaces. For example, recent works have used
LLM coding capabilities to explore reward functions (Ma et al., 2023; Yu et al., 2023), virtual
robotic design (Lehman et al., 2023), environment design (Faldor et al., 2024), and neural ar-
chitecture search (Chen et al., 2024a). LLMs can also act as evaluators (Zheng et al., 2024) for
“interestingness” (Lu et al., 2024b; Zhang et al., 2024) and as recombination operators for black-box
optimization with Evolution Strategies (Lange et al., 2024; Song et al., 2024) and for Quality-Diversity
approaches (Bradley et al., 2024; Ding et al., 2024; Lim et al., 2024). Our work combines many of
these notions, including that our LLM Reviewer judges papers on novelty and interestingness, and
that many proposed ideas are new combinations of previous ones.
AI for Scientific Discovery. AI has greatly assisted scientific discovery across many other fields. For
example, AI has been used for synthetic biology (Hayes et al., 2024; Jumper et al., 2021), materials
discovery (Merchant et al., 2023; Pyzer-Knapp et al., 2022), mathematics (Romera-Paredes et al.,
2024), and algorithm search (Fawzi et al., 2022). Unlike our work, these are usually restricted to a
well-defined search space in a single domain and do not involve “ideation”, writing, or peer review
from the AI system. In its current form, The AI Scientist excels at conducting research ideas
implemented via code; with future advances (e.g. robotic automation for wet labs (Arnold, 2022;
Kehoe et al., 2015; Zucchelli et al., 2021)), the transformative benefits of our approach could reach
across all science, especially as foundation models continue to improve.

8. Limitations & Ethical Considerations
While The AI Scientist produces research that can provide novel insights, it has many limitations
and raises several important ethical considerations. We believe future versions of The AI Scientist
will be able to address many of its current shortcomings.
Limitations of the Automated Reviewer. While the automated reviewer shows promising initial
results, there are several potential areas for improvement. The dataset used, from ICLR 2022, is
old enough to potentially appear in the base model pre-training data - this is a hard claim to test in
practice since typical publicly available LLMs do not share their training data. However, preliminary
analysis showed that LLMs were far from being able to reproduce old reviews exactly from initial
segments, which suggests they have not memorized this data. Furthermore, the rejected papers in our
dataset used the original submission file, whereas for the accepted papers only the final camera-ready
copies were available on OpenReview. Future iterations could use more recent submissions (e.g. from
TMLR) for evaluation. Unlike standard reviewers, the automated reviewer is unable to ask questions
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to the authors in a rebuttal phase, although this could readily be incorporated into our framework.
Finally, since it does not currently use any vision capabilities, The AI Scientist (including the
reviewer) is unable to view figures and must rely on textual descriptions of them.
Common Failure Modes. The AI Scientist, in its current form, has several shortcomings in
addition to those already identified in Section 5. These also include, but are not limited to:
• The idea generation process often results in very similar ideas across different runs and even
models. It may be possible to overcome this by allowing The AI Scientist to directly follow
up and go deeper on its best ideas, or by providing it content from recently-published papers as
a source of novelty.

• As shown in Tables 3 to 5, Aider fails to implement a significant fraction of the proposed ideas.
Furthermore, GPT-4o in particular frequently fails to write LaTeX that compiles. While The AI
Scientist can come up with creative and promising ideas, they are often too challenging for
it to implement.

• The AI Scientist may incorrectly implement an idea, which can be difficult to catch. An
adversarial code-checking reviewer may partially address this. As-is, one should manually check
the implementation before trusting the reported results.

• Because of The AI Scientist’s limited number of experiments per idea, the results often
do not meet the expected rigor and depth of a standard ML conference paper. Furthermore,
due to the limited number of experiments we could afford to give it, it is difficult for The AI
Scientist to conduct fair experiments that control for the number of parameters, FLOPs, or
runtime. This often leads to deceptive or inaccurate conclusions. We expect that these issues
will be mitigated as the cost of compute and foundation models continues to drop.

• Since we do not currently use the vision capabilities of foundation models, it is unable to fix
visual issues with the paper or read plots. For example, the generated plots are sometimes
unreadable, tables sometimes exceed the width of the page, and the page layout (including the
overall visual appearance of the paper (Huang, 2018)) is often suboptimal. Future versions
with vision and other modalities should fix this.

• When writing, The AI Scientist sometimes struggles to find and cite the most relevant
papers. It also commonly fails to correctly reference figures in LaTeX, and sometimes even
hallucinates invalid file paths.

• Importantly, The AI Scientist occasionally makes critical errors whenwriting and evaluating
results. For example, it struggles to compare the magnitude of two numbers, which is a known
pathology with LLMs. Furthermore, when it changes a metric (e.g. the loss function), it
sometimes does not take this into account when comparing it to the baseline. To partially
address this, we make sure all experimental results are reproducible, storing copies of all files
when they are executed.

• Rarely, The AI Scientist can hallucinate entire results. For example, an early version of
our writing prompt told it to always include confidence intervals and ablation studies. Due
to computational constraints, The AI Scientist did not always collect additional results;
however, in these cases, it could sometimes hallucinate an entire ablations table. We resolved
this by instructing The AI Scientist explicitly to only include results it directly observed.
Furthermore, it frequently hallucinates facts we do not provide, such as the hardware used.

• More generally, we do not recommend taking the scientific content of this version of The AI
Scientist at face value. Instead, we advise treating generated papers as hints of promising
ideas for practitioners to follow up on. Nonetheless, we expect the trustworthiness of The AI
Scientist to increase dramatically in the coming years in tandem with improvements to
foundation models. We share this paper and code primarily to show what is currently possible
and hint at what is likely to be possible soon.
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Safe Code Execution. The current implementation of The AI Scientist has minimal direct
sandboxing in the code, leading to several unexpected and sometimes undesirable outcomes if
not appropriately guarded against. For example, in one run, The AI Scientist wrote code in
the experiment file that initiated a system call to relaunch itself, causing an uncontrolled increase
in Python processes and eventually necessitating manual intervention. In another run, The AI
Scientist edited the code to save a checkpoint for every update step, which took up nearly a
terabyte of storage. In some cases, when The AI Scientist’s experiments exceeded our imposed
time limits, it attempted to edit the code to extend the time limit arbitrarily instead of trying to shorten
the runtime. While creative, the act of bypassing the experimenter’s imposed constraints has potential
implications for AI safety (Lehman et al., 2020). Moreover, The AI Scientist occasionally
imported unfamiliar Python libraries, further exacerbating safety concerns. We recommend strict
sandboxing when running The AI Scientist, such as containerization, restricted internet access
(except for Semantic Scholar), and limitations on storage usage.
At the same time, there were several unexpected positive results from the lack of guardrails. For
example, we had forgotten to create the output results directory in the grokking template in our exper-
iments. Each successful run from The AI Scientist that outputted a paper automatically caught
this error when it occurred and fixed it. Furthermore, we found that The AI Scientist would oc-
casionally include results and plots that we found surprising, differing significantly from the provided
templates. We describe some of these novel algorithm-specific visualizations in Section 6.1.
Broader Impact and Ethical Considerations. While The AI Scientist has the potential to be a
valuable tool for researchers, it also carries significant risks of misuse. The ability to automatically
generate and submit papers to academic venues could greatly increase the workload for reviewers,
potentially overwhelming the peer review process and compromising scientific quality control. Similar
concerns have been raised about generative AI in other fields, such as its impact on the arts (Epstein
et al., 2023). Furthermore, if the Automated Reviewer tool was widely adopted by reviewers, it
could diminish the quality of reviews and introduce undesirable biases into the evaluation of papers.
Because of this, we believe that papers or reviews that are substantially AI-generated must be marked
as such for full transparency.
As with most previous technological advances, The AI Scientist has the potential to be used in
unethical ways. For example, it could be explicitly deployed to conduct unethical research, or even
lead to unintended harm if The AI Scientist conducts unsafe research. Concretely, if it were
encouraged to find novel, interesting biological materials and given access to “cloud labs” (Arnold,
2022) where robots perform wet lab biology experiments, it could (without its overseer’s intent) create
new, dangerous viruses or poisons that harm people before we can intervene. Even in computers,
if tasked to create new, interesting, functional software, it could create dangerous malware. The
AI Scientist’s current capabilities, which will only improve, reinforce that the machine learning
community needs to immediately prioritize learning how to align such systems to explore in a manner
that is safe and consistent with our values.

9. Discussion
In this paper, we introduced The AI Scientist, the first framework designed to fully automate the
scientific discovery process, and, as a first demonstration of its capabilities, applied it to machine learn-
ing itself. This end-to-end system leverages LLMs to autonomously generate research ideas, implement
and execute experiments, search for related works, and produce comprehensive research papers. By
integrating stages of ideation, experimentation, and iterative refinement, The AI Scientist aims
to replicate the human scientific process in an automated and scalable manner.
Why does writing papers matter? Given our overarching goal to automate scientific discovery, why
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are we also motivated to have The AI Scientist write papers, like human scientists? For example,
previous AI-enabled systems such as FunSearch (Romera-Paredes et al., 2024) and GNoME (Pyzer-
Knapp et al., 2022) also conduct impressive scientific discovery in restricted domains, but they do not
write papers.
There are several reasons why we believe it is fundamentally important for The AI Scientist to
write scientific papers to communicate its discoveries. First, writing papers offers a highly interpretable
method for humans to benefit from what has been learned. Second, reviewing written papers within
the framework of existing machine learning conferences enables us to standardize evaluation. Third,
the scientific paper has been the primary medium for disseminating research findings since the dawn
of modern science. Since a paper can use natural language, and include plots and code, it can flexibly
describe any type of scientific study and discovery. Almost any other conceivable format is locked into
a certain kind of data or type of science. Until a superior alternative emerges (or possibly invented
by AI), we believe that training The AI Scientist to produce scientific papers is essential for its
integration into the broader scientific community.
Costs. Our framework is remarkably versatile and effectively conducts research across various subfields
of machine learning, including transformer-based language modeling, neural network learning
dynamics, and diffusion modeling. The cost-effectiveness of the system, producing papers with
potential conference relevance at an approximate cost of $15 per paper, highlights its ability to
democratize research (increase its accessibility) and accelerate scientific progress. Preliminary
qualitative analysis, for example in Section 5, suggests that the generated papers can be broadly
informative and novel, or at least contain ideas worthy of future study.
The actual compute we allocated for The AI Scientist to conduct its experiments in this work is
also incredibly light by today’s standards. Notably, our experiments generating hundreds of papers
were largely run only using a single 8×NVIDIA H100 node over the course of a week. Massively
scaling the search and filtering would likely result in significantly higher-quality papers.
In this project, the bulk of the cost for running The AI Scientist is associated with the LLM API
costs for coding and paper writing. In contrast, the costs associated with running the LLM reviewer, as
well as the computational expenses for conducting experiments, are negligible due to the constraints
we’ve imposed to keep overall costs down. However, this cost breakdown may change in the future
if The AI Scientist is applied to other scientific fields or used for larger-scale computational
experiments.
Open vs. Closed Models. To quantitatively evaluate and improve the generated papers, we first
created and validated an Automated Paper Reviewer. We show that, although there is significant
room for improvement, LLMs are capable of producing reasonably accurate reviews, achieving results
comparable to humans across various metrics. Applying this evaluator to the papers generated by
The AI Scientist enables us to scale the evaluation of our papers beyond manual inspection.
We find that Sonnet 3.5 consistently produces the best papers, with a few of them even achieving a
score that exceeds the threshold for acceptance at a standard machine learning conference from the
Automated Paper Reviewer.
However, there is no fundamental reason to expect a single model like Sonnet 3.5 to maintain its
lead. We anticipate that all frontier LLMs, including open models, will continue to improve. The
competition among LLMs has led to their commoditization and increased capabilities. Therefore, our
work aims to be model-agnostic regarding the foundation model provider. In this project, we studied
various proprietary LLMs, including GPT-4o and Sonnet, but also explored using open models like
DeepSeek and Llama-3. We found that open models offer significant benefits, such as lower costs,
guaranteed availability, greater transparency, and flexibility, although slightly worse quality. In the
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future, we aim to use our proposed discovery process to produce self-improving AI in a closed-loop
system using open models.
Future Directions. Direct enhancements to The AI Scientist could include integrating vision
capabilities for better plot and figure handling, incorporating human feedback and interaction to
refine the AI’s outputs, and enabling The AI Scientist to automatically expand the scope of its
experiments by pulling in new data and models from the internet, provided this can be done safely.
Additionally, The AI Scientist could follow up on its best ideas or even perform research directly
on its own code in a self-referential manner. Indeed, significant portions of the code for this project
were written by Aider. Expanding the framework to other scientific domains could further amplify its
impact, paving the way for a new era of automated scientific discovery. For example, by integrating
these technologies with cloud robotics and automation in physical lab spaces (Arnold, 2022; Kehoe
et al., 2015; Zucchelli et al., 2021) provided it can be done safely, The AI Scientist could perform
experiments for biology, chemistry, and material sciences.
Crucially, future work should address the reliability and hallucination concerns, potentially through a
more in-depth automatic verification of the reported results. This could be done by directly linking code
and experiments, or by seeing if an automated verifier can independently reproduce the results.
Conclusion. The introduction of The AI Scientist marks a significant step towards realizing the
full potential of AI in scientific research. By automating the discovery process and incorporating an
AI-driven review system, we open the door to endless possibilities for innovation and problem-solving
in the most challenging areas of science and technology. Ultimately, we envision a fully AI-driven
scientific ecosystem including not only AI-driven researchers but also reviewers, area chairs, and
entire conferences. However, we do not believe the role of a human scientist will be diminished.
We expect the role of scientists will change as we adapt to new technology, and move up the food
chain.
While the current iteration of The AI Scientist demonstrates a strong ability to innovate on
top of well-established ideas, such as Diffusion Modeling or Transformers, it is an open question
whether such systems can ultimately propose genuinely paradigm-shifting ideas. Will future versions
of The AI Scientist be capable of proposing ideas as impactful as Diffusion Modeling, or come
up with the next Transformer architecture? Will machines ultimately be able to invent concepts as
fundamental as the artificial neural network, or information theory? We believe The AI Scientist
will make a great companion to human scientists, but only time will tell to the extent to which the
nature of human creativity and our moments of serendipitous innovation (Stanley and Lehman, 2015)
can be replicated by an open-ended discovery process conducted by artificial agents.
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A. Prompts
We present some representative prompts that we use for The AI Scientist in Section 3 and
Section 4. The full list of prompts can be found in the provided code.

A.1. Idea Generation
These prompts correspond to the first stage of The AI Scientist in Section 3.

Idea Generation System Prompt

You are an ambitious AI PhD student who is looking to publish a paper
that will contribute significantly to the field.

Idea Generation Prompt

{task_description}
<experiment.py>
{code}
</experiment.py>

Here are the ideas that you have already generated:

'''
{prev_ideas_string}
'''

Come up with the next impactful and creative idea for research
experiments and directions you can feasibly investigate with the code
provided. Note that you will not have access to any additional resources
or datasets. Make sure any idea is not overfit the specific training
dataset or model, and has wider significance.

Respond in the following format:

THOUGHT:
<THOUGHT>

NEW IDEA JSON:
```json
<JSON>
```

In <THOUGHT>, first briefly discuss your intuitions and motivations for
the idea. Detail your high-level plan, necessary design choices and
ideal outcomes of the experiments. Justify how the idea is different
from the existing ones.

In <JSON>, provide the new idea in JSON format with the following fields:
- "Name": A shortened descriptor of the idea. Lowercase, no spaces,
underscores allowed.
- "Title": A title for the idea, will be used for the report writing.
- "Experiment": An outline of the implementation. E.g. which functions
need to be added or modified, how results will be obtained, ...
- "Interestingness": A rating from 1 to 10 (lowest to highest).
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- "Feasibility": A rating from 1 to 10 (lowest to highest).
- "Novelty": A rating from 1 to 10 (lowest to highest).

Be cautious and realistic on your ratings.
This JSON will be automatically parsed, so ensure the format is precise.
You will have {num_reflections} rounds to iterate on the idea, but do
not need to use them all.

Idea Novelty System Prompt
You are an ambitious AI PhD student who is looking to publish a paper that
will contribute significantly to the field.
You have an idea and you want to check if it is novel or not. I.e., not
overlapping significantly with existing literature or already well explored.
Be a harsh critic for novelty, ensure there is a sufficient contribution in
the idea for a new conference or workshop paper.
You will be given access to the Semantic Scholar API, which you may use to
survey the literature and find relevant papers to help you make your
decision.
The top 10 results for any search query will be presented to you with the
abstracts.

You will be given {num_rounds} to decide on the paper, but you do not need
to use them all.
At any round, you may exit early and decide on the novelty of the idea.
Decide a paper idea is novel if after sufficient searching, you have not
found a paper that significantly overlaps with your idea.
Decide a paper idea is not novel, if you have found a paper that
significantly overlaps with your idea.

{task_description}
<experiment.py>
{code}
</experiment.py>

Idea Novelty Prompt

Round {current_round}/{num_rounds}.
You have this idea:

"""
{idea}
"""

The results of the last query are (empty on first round):
"""
{last_query_results}
"""

Respond in the following format:

THOUGHT:
<THOUGHT>
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RESPONSE:
```json
<JSON>
```

In <THOUGHT>, first briefly reason over the idea and identify any query that
could help you make your decision.
If you have made your decision, add "Decision made: novel." or
"Decision made: not novel." to your thoughts.

In <JSON>, respond in JSON format with ONLY the following field:
- "Query": An optional search query to search the literature (e.g. attention
is all you need). You must make a query if you have not decided this round.

A query will work best if you are able to recall the exact name of the paper
you are looking for, or the authors.
This JSON will be automatically parsed, so ensure the format is precise.

A.2. Designing Experiments
These prompts correspond to the second stage of The AI Scientist in Section 3.

Experiment Running Aider Prompt

Your goal is to implement the following idea: {title}.
The proposed experiment is as follows: {idea}.
You are given a total of up to {max_runs} runs to complete the necessary
experiments. You do not need to use all {max_runs}.

First, plan the list of experiments you would like to run. For example,
if you are sweeping over a specific hyperparameter, plan each value you
would like to test for each run.

Note that we already provide the vanilla baseline results, so you do not
need to re-run it.

For reference, the baseline results are as follows:

{baseline_results}

After you complete each change, we will run the command `python
experiment.py --out_dir=run_i' where i is the run number and evaluate
the results.
YOUR PROPOSED CHANGE MUST USE THIS COMMAND FORMAT, DO NOT ADD ADDITIONAL
COMMAND LINE ARGS.
You can then implement the next thing on your list.

Plotting Aider Prompt
Great job! Please modify `plot.py` to generate the most relevant plots for
the final writeup.

In particular, be sure to fill in the "labels" dictionary with the correct
names for each run that you want to plot.
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Only the runs in the `labels` dictionary will be plotted, so make sure to
include all relevant runs.

We will be running the command `python plot.py` to generate the plots.

---

Please modify `notes.txt` with a description of what each plot shows along
with the filename of the figure. Please do so in-depth.

Somebody else will be using `notes.txt` to write a report on this in the
future.

A.3. Paper Writing
These prompts correspond to the final stage of The AI Scientist in Section 3.

Paper Writing Aider Prompt

We've provided the `latex/template.tex` file to the project. We will be
filling it in section by section.

First, please fill in the {section} section of the writeup.

Some tips are provided below:
{per_section_tips}

Before every paragraph, please include a brief description of what you plan
to write in that paragraph in a comment.

Be sure to first name the file and use *SEARCH/REPLACE* blocks to perform
these edits.

A.4. Paper Reviewing
These prompts correspond to the review process of The AI Scientist in Section 4.

Paper Review System Prompt

You are an AI researcher who is reviewing a paper that was submitted
to a prestigious ML venue. Be critical and cautious in your decision.
If a paper is bad or you are unsure, give it bad scores and reject
it.

Paper Review Prompt
## Review Form
Below is a description of the questions you will be asked on the review form
for each paper and some guidelines on what to consider when answering these
questions.
When writing your review, please keep in mind that after decisions have been
made, reviews and meta-reviews of accepted papers and opted-in rejected
papers will be made public.
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{neurips_reviewer_guidelines}

{few_show_examples}

Here is the paper you are asked to review:
```
{paper}
```

Paper Review Reflection Prompt

Round {current_round}/{num_reflections}.
In your thoughts, first carefully consider the accuracy and soundness of
the review you just created.
Include any other factors that you think are important in evaluating the
paper.
Ensure the review is clear and concise, and the JSON is in the correct
format.
Do not make things overly complicated.
In the next attempt, try and refine and improve your review.
Stick to the spirit of the original review unless there are glaring
issues.

Respond in the same format as before:
THOUGHT:
<THOUGHT>

REVIEW JSON:
```json
<JSON>
```

If there is nothing to improve, simply repeat the previous JSON EXACTLY
after the thought and include "I am done" at the end of the thoughts but
before the JSON.
ONLY INCLUDE "I am done" IF YOU ARE MAKING NO MORE CHANGES.

Paper Review Ensembling System Prompt
You are an Area Chair at a machine learning conference.
You are in charge of meta-reviewing a paper that was reviewed by
{reviewer_count} reviewers.
Your job is to aggregate the reviews into a single meta-review in the same
format.
Be critical and cautious in your decision, find consensus, and respect the
opinion of all the reviewers.

Paper Review Ensembling Prompt

Review 1/N:
{review_1}

...
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Review N/N:
{review_N}

{neurips_reviewer_guidelines}
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B. Hyperparameters
Here, we list the hyperparameters used in the final experiments in Section 6.

Table 6 | Hyperparameters for The AI Scientist.

Category Hyperparameter Value

Idea Generation Number of Idea Reflections 3
Number of Novelty Search Rounds (Semantic Scholar) 10

Experiment Execution

Max Experiments 5
Max Experiment Attempts 4
Experiment Timeout 7200 seconds
Plotting Timeout 600 seconds

Paper Writing Number of Citation Rounds (Semantic Scholar) 20
Number of LaTeX Error Correction Rounds 5

Reviewer

Number of Reflections 5
Number of Fewshot Examples 0
Number of Ensembled Reviews 5
LLM Temperature 0.1
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C. Progression of Generated Ideas
We visualize the progression of ideas across a run of The AI Scientist on the “Grokking” template
described in Section 6.3 using Sonnet 3.5. The first idea is the seed idea, all subsequent ideas are
AI-generated.

Seed Idea - batch_size_grokking

"Name": "batch_size_grokking",
"Title": "Batch Size Grokking: Assessing the impact of the training
batchsize on the grokking phenomenon",
"Experiment": "Modify the experiments to dynamically adjust the batch size
during training, starting with a small batch size and gradually increasing
it. This could potentially lead to faster generalization on the validation
set.",
"Interestingness": 6,
"Feasibility": 4,
"Novelty": 4,
"novel": true

Idea 1/50 - model_size_grokking

"Name": "model_size_grokking",
"Title": "Investigating the Impact of Model Size on the Grokking
Phenomenon",
"Experiment": "Modify the Transformer class to accept variable number of
layers and dimension sizes. Test models with 1, 2, 4, and 8 layers, and
dimension sizes of 64, 128, 256, and 512. For each dataset and model size,
track the step at which grokking occurs (defined as validation accuracy
exceeding 99%
and final accuracy vs model size for each task.",
"Interestingness": 8,
"Feasibility": 7,
"Novelty": 7,
"novel": true

Idea 2/50 - optimizer_grokking

"Name": "optimizer_grokking",
"Title": "Optimization Dynamics and Grokking: Comparing SGD and Adam with
Different Learning Rate Schedules",
"Experiment": "Modify the training loop to support two optimizers (SGD,
Adam) and two learning rate schedules (constant, cosine annealing). For
each combination, run multiple experiments with different random seeds.
Track validation accuracy, training loss, and L2 norm of weight updates
throughout training. Compare the timing and extent of grokking across these
optimization strategies for each dataset. Analyze how different
optimization dynamics correlate with grokking behavior, including
statistical analysis of the results.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 8,
"novel": true
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Idea 3/50 - biased_data_grokking

"Name": "biased_data_grokking",
"Title": "Grokking Under Biased Data: The Effect of Input Range Bias on
Neural Network Generalization",
"Experiment": "Modify the fetch_train_example method in AbstractDataset to
introduce a simple bias: favoring lower-valued inputs. For modular
arithmetic operations, sample 70%
of the input range. For permutations, favor permutations with more elements
in their original positions. Keep the validation set unbiased. Run
experiments comparing grokking behavior on biased vs. unbiased training
sets. Track metrics such as steps to 99%
validation accuracy, and training loss. Analyze how this bias affects
grokking across different operations.",
"Interestingness": 8,
"Feasibility": 8,
"Novelty": 8,
"novel": true

Idea 4/50 - adaptive_noise_grokking

"Name": "adaptive_noise_grokking",
"Title": "Adaptive Noise in Grokking: Investigating Input Perturbations on
Algorithmic Learning and Representations",
"Experiment": "Modify the GroupDataset class to add operation-specific
noise during training: (1) For modular arithmetic, add small integer
perturbations. (2) For permutations, occasionally swap two elements.
Implement three noise levels (low, medium, high) for each operation.
Compare grokking behavior across noise levels and operations, tracking
steps to 99%
loss. Analyze learned representations by visualizing attention patterns and
performing principal component analysis (PCA) on hidden states at different
training stages. Compare these representations between noisy and non-noisy
training to understand how noise affects the abstraction of concepts.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 9,
"novel": true

Idea 5/50 - attention_evolution_grokking

"Name": "attention_evolution_grokking",
"Title": "Attention Evolution in Grokking: Quantifying the Transition from
Memorization to Generalization",
"Experiment": "Modify the Transformer class to output attention weights.
Extract and store attention weights at key checkpoints: start, mid-
training, grokking point (99%
visualization tools for attention heatmaps and create plots showing
attention evolution over time. Calculate the Frobenius norm of the
difference between attention matrices at consecutive checkpoints to
quantify attention evolution. Compare attention patterns and evolution
metrics across different operations (modular arithmetic vs. permutations).
Analyze attention for specific, informative input sequences to enhance
interpretability. Correlate attention evolution metrics with validation
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accuracy and generalization performance.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 8,
"novel": true

Idea 6/50 - local_vs_global_attention_grokking

"Name": "local_vs_global_attention_grokking",
"Title": "Local vs Global Attention: Investigating the Impact of Attention
Scope on Grokking in Algorithmic Learning",
"Experiment": "Modify the DecoderBlock class to support two attention
mechanisms: full (global) attention and local attention with a fixed window
size. Implement these variants and run experiments across all datasets.
Track metrics including time to grokking (99%
validation accuracy, and training loss. Calculate and compare 'attention
entropy' for both mechanisms across tasks to quantify attention focus.
Analyze how the scope of attention (local vs global) affects grokking
behavior and final performance for different algorithmic tasks.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 8,
"novel": true

Idea 7/50 - input_encoding_grokking

"Name": "input_encoding_grokking",
"Title": "Binary vs One-Hot Encoding: Impact on Grokking in Algorithmic
Learning Tasks",
"Experiment": "Modify the AbstractDataset class to support two encoding
schemes: one-hot (current) and binary. Implement binary encoding for
modular arithmetic operations using log2(p) bits, and for permutations
using ceil(log2(k!)) bits to represent each permutation uniquely. Adjust
the Transformer class to accommodate different input sizes. Run experiments
for each encoding scheme across all datasets, tracking metrics such as time
to grokking (99%
loss, and model memory usage. Analyze how different encoding schemes affect
grokking behavior, convergence speed, and final performance for various
algorithmic tasks. Compare the impact of input representations on the
model's ability to learn and generalize across different operations.
Discuss how findings could inform input representation choices in other
machine learning tasks beyond algorithmic learning.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 8,
"novel": true

Idea 8/50 - curriculum_learning_grokking

"Name": "curriculum_learning_grokking",
"Title": "Curriculum Learning in Grokking: The Effect of Structured Example
Progression on Algorithmic Learning",
"Experiment": "Modify the AbstractDataset class to implement a simple
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curriculum learning strategy. For modular arithmetic operations, start with
operations involving numbers in the lower half of the range and gradually
introduce larger numbers. For permutations, begin with permutations that
differ from the identity by one swap and progressively increase the number
of swaps. Implement a curriculum scheduler that increases difficulty every
500 steps. Run experiments comparing standard random sampling vs.
curriculum learning across all datasets. Track metrics including time to
grokking (99%
loss. Plot learning trajectories (validation accuracy over time) for both
approaches. Compare attention patterns between curriculum and random
approaches at different stages of training. Analyze how the curriculum
affects the grokking phenomenon across different operations and discuss
implications for training neural networks on algorithmic tasks.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 8,
"novel": true

Idea 9/50 - weight_init_grokking

"Name": "weight_init_grokking",
"Title": "Weight Initialization Strategies and Their Impact on Grokking in
Algorithmic Learning",
"Experiment": "Modify the Transformer class to support three weight
initialization strategies: Xavier/Glorot, Kaiming/He, and random normal (as
baseline). Implement these initialization methods for linear layers and
embeddings. Run experiments across all datasets for each initialization
strategy. Track metrics including time to grokking (99%
accuracy), final validation accuracy, training loss, and gradient norm
during training. Plot learning curves and compare the distribution of
weight values at different stages of training. Analyze the loss landscape
by computing gradient variance as a proxy for local geometry at key points
during training. Compare how different initialization strategies affect the
grokking phenomenon, convergence speed, and final performance across
various algorithmic tasks. Investigate potential correlations between
initial weight distributions, gradient variance characteristics, and the
timing/nature of the grokking transition.",
"Interestingness": 9,
"Feasibility": 9,
"Novelty": 8,
"novel": true

Idea 10/50 - task_complexity_grokking

"Name": "task_complexity_grokking",
"Title": "Grokking Across Task Complexity: Mapping Neural Network Learning
Dynamics to Algorithmic Difficulty",
"Experiment": "1. Modify the AbstractDataset class to include new
operations of increasing complexity: modular addition, subtraction,
multiplication, and exponentiation. 2. Implement these operations in new
dataset classes. 3. Quantify task complexity using metrics like algebraic
degree and average solution time for humans (estimated). 4. Run experiments
for each operation, tracking metrics such as time to grokking (99%
validation accuracy), final validation accuracy, training loss, and a new
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'complexity-adjusted learning rate' (validation accuracy improvement per
epoch, normalized by task complexity). 5. Plot learning curves and
complexity-adjusted learning rates for each operation. 6. Analyze attention
patterns and hidden state representations at different stages of training
for each operation. 7. Investigate correlations between quantified task
complexity and grokking characteristics (e.g., time to grokking, steepness
of accuracy improvement).",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 8,
"novel": true

Idea 11/50 - regularization_grokking

"Name": "regularization_grokking",
"Title": "The Role of Regularization in Grokking: How L2 and Label
Smoothing Affect Algorithmic Learning",
"Experiment": "1. Implement L2 regularization by adding weight decay to the
optimizer. 2. Implement label smoothing in the loss function. 3. Modify the
training function to support these regularization techniques with two
strength levels each (low and high). 4. Run experiments for each
regularization technique and strength across all datasets, including a
baseline without regularization. 5. Track metrics: time to grokking (99%
validation accuracy), final validation accuracy, training loss, and a new
'grokking speed' metric (rate of validation accuracy improvement from 50%
to 90%
for different regularization settings. 7. Analyze how L2 regularization and
label smoothing affect the timing, speed, and nature of grokking across
various algorithmic tasks, comparing against the non-regularized
baseline.",
"Interestingness": 9,
"Feasibility": 9,
"Novelty": 8,
"novel": true

Idea 12/50 - grokking_extrapolation

"Name": "grokking_extrapolation",
"Title": "Grokking and Extrapolation: Investigating the Limits of
Algorithmic Understanding",
"Experiment": "1. Modify AbstractDataset to create a separate test set with
out-of-distribution examples (e.g., larger numbers for modular arithmetic,
longer permutations). 2. Implement a new evaluation function for the test
set. 3. During training, periodically evaluate on both validation and test
sets. 4. Track metrics: time to grokking on validation set, final
validation accuracy, test set accuracy at grokking point, final test set
accuracy, and 'extrapolation gap'. 5. Implement visualization of test set
performance and extrapolation gap over time, highlighting the grokking
point. 6. Compare extrapolation capabilities across different operations
and model sizes. 7. Analyze attention patterns on test set inputs before
and after grokking. 8. Implement a simple MLP baseline for comparison.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 9,
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"novel": true

Idea 13/50 - label_noise_grokking

"Name": "label_noise_grokking",
"Title": "Grokking Under Noise: The Impact of Systematic and Random Label
Errors on Algorithmic Learning",
"Experiment": "1. Modify the AbstractDataset class to introduce two types
of label noise: random (labels changed randomly) and systematic (specific
labels consistently flipped). Add a 'noise_type' parameter
(random/systematic) and 'noise_level' parameter (low: 5%
high: 20%
training set while keeping the validation set clean. 3. Run experiments for
each noise type and level across all datasets. 4. Track metrics: time to
grokking (99%
loss, and model confidence (mean softmax probability of correct class). 5.
Plot learning curves and model confidence for different noise types and
levels, highlighting the grokking point for each. 6. Analyze how different
types and levels of label noise affect the timing, speed, and extent of
grokking across different operations. 7. Compare attention patterns between
noisy and clean training at different stages to understand how the model
adapts to noise.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 9,
"novel": true

Idea 14/50 - compositional_grokking

"Name": "compositional_grokking",
"Title": "Compositional Grokking: Investigating the Relationship Between
Grokking and Compositional Learning in Modular Arithmetic",
"Experiment": "1. Modify ModSumDataset and ModSubtractDataset to include
composite operations: (a + b) - c mod p and (a - b) + c mod p. 2. Implement
new dataset class CompositeModDataset for these operations. 3. Run
experiments comparing learning curves for basic (a + b, a - b) and
composite operations. 4. Track metrics: time to grokking for basic vs.
composite operations, correlation between grokking times, final accuracies.
5. Analyze attention patterns to see if the model learns to attend to
intermediate results in composite operations. 6. Implement a 'compositional
generalization' test by training on basic operations and testing on their
compositions. 7. Compare internal representations (e.g., using PCA on
hidden states) for basic vs. composite operations at different stages of
training.",
"Interestingness": 9,
"Feasibility": 6,
"Novelty": 9,
"novel": true

Idea 15/50 - mutual_information_grokking

"Name": "mutual_information_grokking",
"Title": "Information Dynamics in Grokking: Analyzing Mutual Information
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Evolution During Algorithmic Learning",
"Experiment": "1. Implement a function to estimate mutual information using
a binning approach for efficiency. 2. Modify the Transformer class to
output hidden states from the final layer. 3. Update the training loop to
calculate and store mutual information between (a) inputs and outputs, and
(b) final hidden states and outputs, at regular intervals. 4. Run
experiments across all datasets, tracking these mutual information metrics
alongside validation accuracy and training loss. 5. Create plots showing
the evolution of both mutual information metrics over training time,
highlighting the grokking point. 6. Analyze how mutual information trends
relate to grokking by testing specific hypotheses: (a) Rapid increase in
hidden state-output mutual information coincides with grokking, (b) Input-
output mutual information stabilizes post-grokking. 7. Compare mutual
information dynamics between different operations and model sizes to
identify common patterns in successful grokking.",
"Interestingness": 9,
"Feasibility": 6,
"Novelty": 9,
"novel": true

Idea 16/50 - sparse_subnetworks_grokking

"Name": "sparse_subnetworks_grokking",
"Title": "Sparse Subnetworks in Grokking: Investigating the Emergence of
Critical Structures During Algorithmic Learning",
"Experiment": "1. Implement a simple magnitude-based pruning function for
the Transformer model. 2. Modify the training loop to perform pruning at
key points: before training, just before grokking (based on validation
accuracy), and after grokking. 3. For each pruning point, create sparse
networks at different sparsity levels (e.g., 50%
these sparse networks from the original initialization for a fixed number
of steps. 5. Track metrics: validation accuracy of sparse networks,
sparsity level, and grokking speed (if it occurs). 6. Plot the performance
of sparse networks at different sparsity levels and pruning points. 7.
Compare the structure and performance of sparse networks found before and
after grokking across different operations.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 9,
"novel": true

Idea 17/50 - positional_encoding_grokking

"Name": "positional_encoding_grokking",
"Title": "Inductive Biases in Grokking: The Impact of Positional Encoding
Schemes on Algorithmic Learning",
"Experiment": "1. Modify the Transformer class to support three positional
encoding schemes: sinusoidal (current), learned embeddings, and a simple
binary encoding (e.g., [0,1,0,1,0] for 'a o b = c'). 2. Implement these
encoding schemes, ensuring they work with the existing sequence length. 3.
Run experiments for each encoding scheme across all datasets, tracking:
time to grokking (99%
training loss, and attention entropy. 4. Analyze how different encoding
schemes affect attention patterns and grokking behavior for each operation
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type. 5. Compare generalization capabilities on sequences with shuffled
operands (e.g., 'b o a = c'). 6. Correlate encoding scheme performance with
operation complexity to identify potential interactions between input
representation and task structure. 7. Discuss implications for designing
transformers for specific algorithmic tasks based on findings.",
"Interestingness": 9,
"Feasibility": 9,
"Novelty": 9,
"novel": true

Idea 18/50 - adversarial_robustness_grokking

"Name": "adversarial_robustness_grokking",
"Title": "Adversarial Robustness During Grokking: Tracking Vulnerability
Evolution in Algorithmic Learning",
"Experiment": "1. Implement a simple perturbation method: randomly flip 1-2
bits in the input representation for modular arithmetic, and swap 1-2
elements for permutations. 2. Modify the training loop to generate
perturbed inputs and evaluate model performance on them every 500 steps. 3.
Track metrics: normal validation accuracy, accuracy on perturbed inputs,
and 'robustness gap' (difference between normal and perturbed accuracy). 4.
Plot the evolution of robustness to perturbations alongside the grokking
curve. 5. Compare robustness before, during, and after grokking across
different operations. 6. Analyze examples of successful perturbations at
different stages of training. 7. Investigate potential correlations between
the timing of grokking and changes in robustness to perturbations.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 9,
"novel": true

Idea 19/50 - critical_periods_grokking

"Name": "critical_periods_grokking",
"Title": "Critical Periods in Grokking: The Impact of Timed Learning Rate
Spikes on Algorithmic Learning",
"Experiment": "1. Modify the training loop to support learning rate spikes
at specific points (25%
to apply these spikes, increasing the learning rate by 10x for 100 steps.
3. Run experiments for each spike timing across all datasets (modular
arithmetic and permutations), including a control group with no spikes. 4.
Track metrics: time to grokking, final validation accuracy, and 'spike
impact' (change in validation accuracy slope in 500 steps post-spike). 5.
Plot learning curves highlighting spike points and their impacts. 6.
Analyze how spike timing affects grokking across different operations,
comparing modular arithmetic tasks with permutations. 7. Compare attention
patterns immediately before and after impactful spikes. 8. Correlate spike
impact with the stage of learning (pre-grokking, during grokking, post-
grokking) to identify potential critical periods, assessing whether these
periods are task-specific or general across operations.",
"Interestingness": 9,
"Feasibility": 9,
"Novelty": 9,
"novel": true
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Idea 20/50 - lottery_tickets_grokking

"Name": "lottery_tickets_grokking",
"Title": "Lottery Tickets in Grokking: Investigating Sparse Subnetworks
Capable of Algorithmic Learning",
"Experiment": "1. Implement an iterative magnitude pruning function for the
Transformer model. 2. Modify the training loop to support multiple rounds
of train-prune-reset cycles. 3. For each dataset, run experiments with
pruning levels of 30%
iteration, train the network to convergence, prune the specified percentage
of smallest weights, then reset remaining weights to their initial values.
5. Track metrics for each sparse network: time to grokking (or maximum
training time if grokking doesn't occur), final validation accuracy, and
training loss. 6. Introduce a 'grokking efficiency' metric: the ratio of
time to grokking for the sparse network vs. the dense network. For networks
that don't grok, use the maximum training time. 7. Plot learning curves for
each pruning level, highlighting grokking points and grokking efficiency.
8. Compare the structure of sparse networks that achieve grokking across
different operations, focusing on the distribution of preserved weights in
different layers and attention heads. 9. Analyze the correlation between
pruning level and grokking efficiency across different algorithmic tasks,
including cases where grokking fails to occur.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 8,
"novel": false

Idea 21/50 - algebraic_structure_grokking

"Name": "algebraic_structure_grokking",
"Title": "Grokking and Algebraic Structure: How Group Properties Influence
Neural Network Learning",
"Experiment": "1. Implement new dataset classes for modular multiplication
and division (modulo p, where p is prime, ensuring proper group
structures). 2. For each operation (addition, multiplication, division),
calculate and store two properties: group order and number of generators.
3. Run experiments for each operation type, tracking: time to grokking,
final validation accuracy, and the two group properties. 4. Plot learning
curves and grokking points for each operation, labeled with their group
properties. 5. Analyze the correlation between group properties and
grokking behavior (e.g., time to grokking, steepness of accuracy
improvement). 6. Compare attention patterns across operations, focusing on
how they reflect the underlying group structure (e.g., uniformity for
commutative operations). 7. Test the model's ability to generalize by
evaluating on compositions of learned operations (e.g., a * b + c mod p)
after training on individual operations.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 9,
"novel": true
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Idea 22/50 - mdl_grokking

"Name": "mdl_grokking",
"Title": "Minimum Description Length and Grokking: Investigating the
Relationship Between Model Compression and Algorithmic Learning",
"Experiment": "1. Implement functions to calculate model complexity: (a) L2
norm of weights, (b) number of bits to store parameters at different
precisions, (c) effective number of parameters using BIC. 2. Modify the
training loop to track these complexity measures alongside existing
metrics. 3. Run experiments across all datasets, recording complexity
measures, validation accuracy, and training loss at regular intervals. 4.
Plot the evolution of model complexity alongside the grokking curve. 5.
Analyze the correlation between sudden decreases in model complexity and
the onset of grokking, including statistical tests for significance. 6.
Compare complexity dynamics across different operations and model sizes. 7.
Visualize weight distributions at pre-grokking, during grokking, and post-
grokking stages. 8. Implement and compare two early stopping mechanisms:
one based on model complexity stabilization and another based on validation
loss stabilization.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 9,
"novel": true

Idea 23/50 - invariance_learning_grokking

"Name": "invariance_learning_grokking",
"Title": "Learning Invariances in Grokking: Tracking Symmetry Awareness
During Algorithmic Learning",
"Experiment": "1. Modify AbstractDataset to generate transformed versions
of inputs (cyclic shifts for modular arithmetic, relabelings for
permutations). 2. Update the evaluation function to test model predictions
on both original and transformed inputs. 3. Implement an 'invariance score'
metric: mean absolute difference between predictions on original and
transformed inputs. 4. Modify the training loop to calculate and store the
invariance score at regular intervals. 5. Run experiments across all
datasets, tracking the invariance score alongside existing metrics. 6. Plot
the evolution of the invariance score alongside the grokking curve. 7.
Analyze how the invariance score changes before, during, and after
grokking. 8. Compare invariance learning across different operations and
model sizes. 9. Investigate correlation between invariance score and
generalization performance.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 9,
"novel": true

Idea 24/50 - grokking_double_descent

"Name": "grokking_double_descent",
"Title": "Grokking and Double Descent: Exploring the Intersection of Two
Deep Learning Phenomena",
"Experiment": "1. Create a range of model sizes by varying num_layers (1 to
8) and dim_model (32 to 512). 2. For each dataset, train models of
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different sizes, tracking validation accuracy, training loss, and time to
grokking (99%
parameters to identify double descent behavior. 4. On the same plot, mark
the point where grokking occurs for each model size. 5. Analyze the
relationship between grokking timing and the different regimes of the
double descent curve (under-parameterized, critical, over-parameterized).
6. Calculate the correlation between model size and time to grokking. 7.
Compare double descent and grokking behavior across different operations
(modular arithmetic vs. permutations). 8. Investigate whether grokking
consistently occurs in a specific regime of the double descent curve.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 9,
"novel": false

Idea 25/50 - ntk_alignment_grokking

"Name": "ntk_alignment_grokking",
"Title": "NTK-Output Alignment in Grokking: Tracking Feature Learning
Dynamics in Algorithmic Tasks",
"Experiment": "1. Implement a function to compute the NTK-output alignment:
the cosine similarity between the NTK's top eigenvector and the output
gradient. 2. Modify the training loop to compute and store this alignment
metric every 100 steps. 3. Run experiments across all datasets, tracking
NTK-output alignment alongside validation accuracy and training loss. 4.
Plot the evolution of NTK-output alignment alongside the grokking curve. 5.
Analyze how the alignment changes before, during, and after grokking,
identifying any consistent patterns across different operations. 6.
Investigate correlations between sudden changes in alignment and the onset
of grokking. 7. Compare alignment dynamics for models that achieve grokking
vs. those that don't. 8. Experiment with using the alignment metric as an
early stopping criterion or to adjust learning rates dynamically. 9.
Discuss implications of findings for understanding feature learning and
generalization in grokking.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 9,
"novel": true

Idea 26/50 - loss_landscape_grokking

"Name": "loss_landscape_grokking",
"Title": "Loss Landscape Evolution in Grokking: Geometric Insights into
Algorithmic Learning",
"Experiment": "1. Implement functions to compute and visualize 2D loss
landscapes using filter-wise normalization. 2. Modify the training loop to
save model checkpoints at key points: start of training, 25%
just before grokking (based on validation accuracy), during grokking, and
after grokking. 3. For each checkpoint, compute and store 2D loss landscape
visualizations. 4. Define quantitative metrics for loss landscape
characteristics: (a) local smoothness (average gradient magnitude), (b)
global convexity (ratio of loss at edges to center), (c) barrier height
(maximum loss along minimum loss path). 5. Run experiments across all
datasets, generating loss landscapes and computing metrics at key points.
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6. Create side-by-side comparisons of loss landscapes at different stages
of training for each operation. 7. Analyze how loss landscape metrics
change before, during, and after grokking. 8. Compare loss landscape
evolution between operations that grok quickly vs. slowly. 9. Investigate
correlations between changes in loss landscape metrics and the onset of
grokking.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 8,
"novel": true

Idea 27/50 - neural_collapse_grokking

"Name": "neural_collapse_grokking",
"Title": "Neural Collapse in Grokking: Investigating Feature Geometry
During Algorithmic Learning",
"Experiment": "1. Modify Transformer to output final layer features. 2.
Implement functions to compute class means and covariances. 3. Calculate
simplified neural collapse metrics: (a) average cosine similarity between
class means, (b) ratio of within-class to between-class variances. 4. Track
these metrics every 500 steps during training. 5. Run experiments on
modular arithmetic and permutation datasets. 6. Plot neural collapse
metrics alongside grokking curves. 7. Analyze changes in metrics before,
during, and after grokking. 8. Compare neural collapse dynamics between
operations that grok quickly vs. slowly. 9. Visualize class mean
trajectories in 2D/3D using PCA. 10. Discuss implications for understanding
both grokking and general neural network learning dynamics.",
"Interestingness": 9,
"Feasibility": 6,
"Novelty": 9,
"novel": true

Idea 28/50 - data_augmentation_grokking

"Name": "data_augmentation_grokking",
"Title": "Data Augmentation in Grokking: The Impact of Input
Transformations on Algorithmic Learning",
"Experiment": "1. Implement task-specific augmentations: (a) For modular
arithmetic: add random offsets (mod p) to inputs. (b) For permutations:
apply random permutations to inputs and outputs. 2. Modify GroupDataset to
apply augmentations with 0%
for each augmentation level across all datasets. 4. Track metrics: time to
grokking (99%
'augmentation generalization gap' (difference between augmented and non-
augmented validation accuracy). 5. Plot learning curves and generalization
gaps for each augmentation level. 6. Analyze the correlation between
augmentation level and grokking speed. 7. Compare attention patterns
between augmentation levels to understand representation changes. 8.
Discuss implications for designing data augmentation strategies in
algorithmic learning tasks.",
"Interestingness": 9,
"Feasibility": 9,
"Novelty": 8,
"novel": true
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Idea 29/50 - emergent_grokking

"Name": "emergent_grokking",
"Title": "Emergent Abilities in Grokking: Investigating Scale-Dependent
Algorithmic Learning",
"Experiment": "1. Modify existing datasets to include 'simple' and
'complex' versions (e.g., mod sum with small vs. large primes). 2. Adjust
Transformer class to scale from tiny (1 layer, 64 dim) to medium (4 layers,
512 dim). 3. For each operation, train models of increasing size, tracking
grokking time and performance on both simple and complex versions. 4.
Implement a generalization test for each operation (e.g., mod sum with even
larger primes). 5. Plot learning curves for different model sizes,
highlighting grokking points. 6. Create heatmaps of model size vs.
operation complexity, showing grokking time and generalization test
results. 7. Perform statistical analysis to identify significant jumps in
performance across model sizes, using metrics such as accuracy increase
rate and time to reach 99%
behavior patterns across different operation types.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 9,
"novel": true

Idea 30/50 - functional_modularity_grokking

"Name": "functional_modularity_grokking",
"Title": "Functional Modularity in Grokking: Analyzing Emergent
Specialization in Transformer Networks During Algorithmic Learning",
"Experiment": "1. Implement functions to track weight update patterns and
attention focus for each layer and head. 2. Modify the training loop to
compute and store these metrics at regular intervals. 3. Define a
'functional modularity score' based on the consistency of weight updates
and attention patterns for specific input types. 4. Run experiments across
all datasets, tracking the functional modularity score alongside existing
metrics. 5. Plot the evolution of functional modularity alongside the
grokking curve. 6. Analyze how functional modularity changes before,
during, and after grokking. 7. Visualize the most consistent patterns at
different stages of training and interpret their functions. 8. Compare
functional modularity dynamics between different operations and model
sizes. 9. Investigate correlations between functional modularity and
grokking speed or generalization performance.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 9,
"novel": true

Idea 31/50 - information_compression_grokking

"Name": "information_compression_grokking",
"Title": "Information Compression in Grokking: Analyzing Representational
Dynamics During Algorithmic Learning",
"Experiment": "1. Modify Transformer class to include a bottleneck layer
(smaller dimension linear layer) after the encoder. 2. Implement function
to compute activation sparsity (%
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bottleneck layer. 3. Update training loop to compute and store activation
sparsity and gradient magnitudes of the bottleneck layer at regular
intervals. 4. Run experiments with different bottleneck sizes (e.g., 25%
50%
to grokking, final validation accuracy, activation sparsity, and gradient
magnitudes. 6. Plot activation sparsity and gradient magnitude evolution
alongside grokking curves for each bottleneck size. 7. Analyze how these
metrics change before, during, and after grokking. 8. Test generalization
by evaluating models on slightly out-of-distribution examples (e.g., larger
numbers in modular arithmetic). 9. Investigate correlation between optimal
compression (measured by activation sparsity) and grokking speed,
generalization performance.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 8,
"novel": true

Idea 32/50 - critical_learning_periods_grokking

"Name": "critical_learning_periods_grokking",
"Title": "Critical Learning Periods in Grokking: Temporal Dynamics of
Algorithmic Understanding",
"Experiment": "1. Modify the training loop to support 'intervention
periods' where learning rate is increased by 5x for 100 steps. 2. Implement
a sliding window intervention strategy, with windows of 500 steps, starting
every 250 steps. 3. Run experiments for each window across all datasets and
three model sizes (small, medium, large), including a control group with no
interventions. 4. Track metrics: time to grokking, final validation
accuracy, and 'intervention impact' (area under the validation accuracy
curve for 500 steps post-intervention). 5. Plot learning curves
highlighting intervention windows and their impacts. 6. Create heatmaps
visualizing intervention impact across time windows and model sizes for
each operation. 7. Analyze how intervention timing affects grokking across
different operations and model sizes. 8. Compare attention patterns
immediately before and after impactful interventions. 9. Investigate
whether certain operations or model sizes have more pronounced critical
periods than others. 10. Discuss implications for curriculum design in
machine learning and potential applications in continual and transfer
learning.",
"Interestingness": 9,
"Feasibility": 7,
"Novelty": 9,
"novel": true

Idea 33/50 - simplicity_bias_grokking

"Name": "simplicity_bias_grokking",
"Title": "Simplicity Bias in Grokking: Analyzing Weight Matrix Complexity
During Algorithmic Learning",
"Experiment": "1. Modify AbstractDataset to include two complexity levels
for each operation (e.g., small vs. large prime for modular arithmetic,
short vs. long permutations). 2. Implement a function to compute the
effective rank of weight matrices using singular value decomposition. 3.
Update the training loop to compute and store the effective rank for each
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layer every 500 steps. 4. Run experiments across all datasets and both
complexity levels, tracking effective rank alongside existing metrics. 5.
Plot the evolution of effective rank alongside grokking curves for each
complexity level and operation. 6. Analyze how effective rank changes
before, during, and after grokking, and how this relates to task
complexity. 7. Investigate correlations between effective rank dynamics and
grokking speed or generalization performance. 8. Compare effective rank
patterns across different operations and model sizes. 9. Contrast effective
rank dynamics between operations that grok quickly versus those that grok
slowly or fail to grok. 10. Experiment with using effective rank as an
indicator for the onset of grokking.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 9,
"novel": true

Idea 34/50 - lucky_initializations_grokking

"Name": "lucky_initializations_grokking",
"Title": "Lucky Initializations in Grokking: Identifying and Analyzing
Favorable Starting Points for Algorithmic Learning",
"Experiment": "1. Implement a function to generate and store 50 random
initializations for the Transformer model. 2. Modify the training loop to
support training from stored initializations and different learning rates.
3. For each dataset, train models from the 50 initializations with 3
learning rates, tracking 'grokking efficiency' (ratio of validation
accuracy to training steps at 99%
initializations (top 20%
characteristics of lucky initializations: weight distribution statistics,
layerwise norms, and attention pattern initialization. 6. Implement a
function to visualize the loss landscape around initial points using
filter-wise normalization. 7. Compare lucky initializations across
different operations to identify common patterns. 8. Develop a simple
predictor for initialization 'luckiness' based on identified
characteristics. 9. Test transfer of lucky initializations across tasks and
learning rates.",
"Interestingness": 9,
"Feasibility": 9,
"Novelty": 9,
"novel": true

Idea 35/50 - relative_attention_grokking

"Name": "relative_attention_grokking",
"Title": "Relative Positional Attention and Its Impact on Grokking in
Algorithmic Learning",
"Experiment": "1. Modify the DecoderBlock class to support two attention
types: standard (current) and relative positional. 2. Implement relative
positional attention, ensuring it works with the existing sequence length.
3. Update the Transformer class to accept an attention_type parameter. 4.
Run experiments for both attention types across all datasets, tracking:
time to grokking (99%
training loss, grokking transition sharpness (rate of validation accuracy
increase), and post-grokking stability (variance in validation accuracy
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after reaching 99%
highlighting grokking points and transition periods. 6. Visualize and
compare attention patterns between the two mechanisms at key stages: pre-
grokking, during grokking transition, and post-grokking. 7. Analyze how
relative positional attention affects grokking behavior, transition
sharpness, and stability for each operation type compared to standard
attention. 8. Investigate correlations between attention type and grokking
speed or post-grokking stability. 9. Discuss implications for designing
transformers for specific algorithmic tasks based on findings.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 8,
"novel": true

Idea 36/50 - grokking_task_interference

"Name": "grokking_task_interference",
"Title": "Grokking and Task Interference: Exploring the Stability of
Algorithmic Understanding",
"Experiment": "1. Modify the training loop to support learning two modular
arithmetic operations sequentially (e.g., addition then multiplication). 2.
Implement a task scheduler that switches between tasks at regular
intervals. 3. Create a 'dual-task evaluation' function to assess
performance on both tasks simultaneously. 4. Track metrics: time to
grokking for each task, performance on the first task while learning the
second, and a 'grokking stability' score (maintenance of >95%
task 1 while learning task 2). 5. Run experiments with different task
switching frequencies. 6. Analyze how grokking on one task affects learning
speed and grokking on the subsequent task. 7. Visualize attention patterns
before and after introducing the second task to understand representation
changes. 8. Investigate the correlation between grokking speed on the first
task and stability of that understanding when learning the second task. 9.
Compare results with a baseline of learning both tasks simultaneously to
isolate the effects of sequential learning.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 9,
"novel": true

Idea 37/50 - attention_inductive_bias_grokking

"Name": "attention_inductive_bias_grokking",
"Title": "Inductive Biases in Attention Mechanisms: Their Impact on
Grokking in Algorithmic Learning",
"Experiment": "1. Modify DecoderBlock class to support two attention
mechanisms: standard dot-product and additive (Bahdanau). 2. Implement
these attention mechanisms, ensuring compatibility with existing
architecture. 3. Update Transformer class to accept an attention_type
parameter. 4. Select a subset of most illustrative datasets based on
preliminary experiments. 5. Run experiments for each attention type on
selected datasets, tracking: time to grokking (99%
final validation accuracy, training loss, and 'grokking transition
sharpness' (defined as the maximum rate of validation accuracy increase
over any 500-step window). 6. Implement a simple generalization test using
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slightly out-of-distribution examples (e.g., larger numbers for modular
arithmetic). 7. Plot learning curves for each attention type, highlighting
grokking points and transition periods. 8. Analyze how different attention
mechanisms affect grokking behavior, transition sharpness, and
generalization performance for each operation type. 9. Visualize attention
patterns for each mechanism at key stages: pre-grokking, during grokking
transition, and post-grokking. 10. Discuss implications for designing
transformers with appropriate inductive biases for specific types of
algorithmic learning tasks.",
"Interestingness": 9,
"Feasibility": 9,
"Novelty": 9,
"novel": true

Idea 38/50 - gradient_dynamics_grokking

"Name": "gradient_dynamics_grokking",
"Title": "Gradient Dynamics in Grokking: Analyzing Information Flow
Efficiency During Algorithmic Learning",
"Experiment": "1. Modify the training loop to compute gradient statistics
(sparsity and magnitude distribution) for each layer. 2. Implement
functions to calculate gradient sparsity (%
magnitude percentiles. 3. Update training process to store these metrics
every 500 steps. 4. Run experiments across all datasets, tracking gradient
metrics alongside existing performance metrics. 5. Plot the evolution of
gradient sparsity and magnitude distributions alongside grokking curves. 6.
Analyze how gradient dynamics change before, during, and after grokking. 7.
Compare gradient patterns between operations that grok quickly vs. slowly.
8. Investigate correlations between changes in gradient dynamics and
grokking speed or generalization performance. 9. Visualize gradient flow
patterns at key stages: pre-grokking, during grokking transition, and post-
grokking.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 8,
"novel": true

Idea 39/50 - adaptive_curriculum_grokking

"Name": "adaptive_curriculum_grokking",
"Title": "Adaptive Curriculum Learning in Grokking: Optimizing Example
Difficulty for Efficient Algorithmic Understanding",
"Experiment": "1. Modify AbstractDataset to include a difficulty scoring
function (e.g., input magnitude for modular arithmetic, cycle length for
permutations). 2. Implement adaptive sampling strategy: start with easiest
20%
level exceeds 90%
tracking difficulty of selected examples. 4. Run experiments comparing
adaptive curriculum, random sampling, and static curriculum (increasing
difficulty linearly) across all datasets. 5. Track metrics: time to
grokking, final validation accuracy, learning trajectory smoothness, and
example difficulty distribution over time. 6. Analyze relationship between
difficulty progression and grokking onset. 7. Visualize learning curves and
difficulty progression for each strategy. 8. Compare consistency and speed
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of grokking across different random seeds for each strategy. 9. Analyze
computational efficiency by comparing total number of examples needed to
achieve grokking for each strategy. 10. Compare attention patterns at key
points (pre-grokking, during grokking, post-grokking) across strategies to
understand how adaptive curriculum affects internal representations.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 9,
"novel": true

Idea 40/50 - task_structure_grokking

"Name": "task_structure_grokking",
"Title": "Task Structure and Grokking: Investigating the Relationship
Between Algorithmic Complexity and Learning Dynamics",
"Experiment": "1. Modify AbstractDataset to include a
'structural_complexity' score based on: a) number of unique outputs, b)
input-output correlation, c) algebraic degree for modular operations or
cycle structure for permutations. 2. Extend existing dataset classes to
include a wider range of operations (e.g., modular addition,
multiplication, exponentiation; simple and complex permutations). 3. Run
experiments across all operations, tracking time to grokking, final
validation accuracy, and learning curve smoothness. 4. Plot grokking
metrics against structural complexity scores, comparing trends between
modular arithmetic and permutation tasks. 5. Analyze correlation between
structural complexity and grokking behavior. 6. Compare attention patterns
and gradient flows across tasks of different complexity. 7. Implement a
generalization test where models trained on simpler structures are
evaluated on more complex ones. 8. Discuss implications for neural network
learning on structured vs. unstructured tasks in general machine learning
contexts.",
"Interestingness": 9,
"Feasibility": 9,
"Novelty": 9,
"novel": true

Idea 41/50 - numerical_base_grokking

"Name": "numerical_base_grokking",
"Title": "Numerical Base and Grokking: How Input Representation Affects
Pattern Recognition in Algorithmic Learning",
"Experiment": "1. Modify AbstractDataset and modular arithmetic dataset
classes to support binary and decimal bases. 2. Implement functions to
convert between bases and adjust the encode/decode methods. 3. Update the
Transformer class to handle variable input lengths. 4. Run experiments for
binary and decimal bases on modular addition and multiplication tasks. 5.
Track metrics: time to grokking (99%
accuracy, training loss, and 'cross-base generalization' (accuracy when
testing on the other base). 6. Plot learning curves for each base,
highlighting grokking points. 7. Compare learning curves for binary (0-3)
vs decimal (0-9) to isolate base effects from sequence length. 8. Analyze
how different bases affect grokking speed and pattern recognition. 9.
Compare attention patterns across bases at key stages: pre-grokking, during
grokking, and post-grokking. 10. Discuss implications for choosing input
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representations in mathematical machine learning tasks.",
"Interestingness": 9,
"Feasibility": 9,
"Novelty": 9,
"novel": true

Idea 42/50 - activation_function_grokking

"Name": "activation_function_grokking",
"Title": "Activation Functions and Grokking: Investigating the Role of Non-
linearity in Algorithmic Learning and Generalization",
"Experiment": "1. Modify the DecoderBlock class to support multiple
activation functions (ReLU, GELU, Tanh). 2. Update the Transformer class to
accept an activation_type parameter, allowing for both uniform and hybrid
activation setups. 3. Run experiments comparing the baseline (GELU) with
ReLU, Tanh, and a hybrid setup (ReLU in lower layers, Tanh in upper layers)
across all datasets. 4. Track metrics: time to grokking (99%
accuracy), final validation accuracy, training loss, 'grokking transition
sharpness', and gradient flow statistics. 5. Plot learning curves for each
activation setup, highlighting grokking points and transition periods. 6.
Visualize decision boundaries at different training stages for each
activation setup. 7. Analyze how different activation functions affect
grokking behavior, transition sharpness, and final performance for each
operation type. 8. Compare hidden representations (using t-SNE) across
activation setups at key stages: pre-grokking, during grokking transition,
and post-grokking. 9. Investigate the relationship between activation
function properties and the trade-off between memorization and
generalization. 10. Discuss implications for choosing activation functions
in tasks requiring pattern discovery and generalization beyond algorithmic
learning.",
"Interestingness": 9,
"Feasibility": 9,
"Novelty": 9,
"novel": true

Idea 43/50 - phase_transition_grokking

"Name": "phase_transition_grokking",
"Title": "Grokking as a Phase Transition: Characterizing Critical Behavior
in Algorithmic Learning",
"Experiment": "1. Implement functions to track key metrics: validation
accuracy, training loss, gradient norm, and weight norm. 2. Modify training
loop to compute and store these metrics every 100 steps. 3. Run experiments
across all datasets, with finer-grained tracking (every 10 steps) around
the suspected grokking point. 4. Implement analysis tools to detect sudden
changes or discontinuities in metrics. 5. Plot all metrics on a single,
multi-axis graph to visualize potential phase transitions. 6. Calculate
susceptibility using fluctuations in validation accuracy near the grokking
point. 7. Analyze scaling behavior of susceptibility to identify critical
exponents, if any. 8. Compare phase transition characteristics across
different operations and model sizes. 9. Investigate whether manipulating
learning rate or gradient clipping can induce or prevent grokking phase
transitions.",
"Interestingness": 9,
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"Feasibility": 8,
"Novelty": 9,
"novel": false

Idea 44/50 - effective_dimension_grokking

"Name": "effective_dimension_grokking",
"Title": "Effective Dimension Dynamics in Grokking: Analyzing
Representational Complexity During Algorithmic Learning",
"Experiment": "1. Implement functions to compute the rank and top-k
singular values of weight matrices. 2. Modify the training loop to compute
and store these metrics every 500 steps for each layer. 3. Run experiments
across all datasets, tracking rank and singular value distributions
alongside existing performance metrics. 4. Implement a simple MLP baseline
that doesn't exhibit grokking for comparison. 5. Plot the evolution of rank
and singular value distributions alongside grokking curves for both
Transformer and MLP models. 6. Analyze how these metrics change before,
during, and after grokking in the Transformer, contrasting with the MLP. 7.
Compare rank dynamics between operations that grok quickly vs. slowly. 8.
Investigate correlations between changes in rank/singular values and
grokking speed or generalization performance. 9. Visualize the relationship
between these metrics and other performance indicators at different stages
of training.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 9,
"novel": true

Idea 45/50 - representation_entropy_grokking

"Name": "representation_entropy_grokking",
"Title": "Representation Entropy in Grokking: Tracking the Simplification
of Learned Concepts",
"Experiment": "1. Implement a function to compute the entropy of the
model's internal representations. 2. Modify the Transformer class to output
intermediate representations. 3. Update the training loop to compute and
store the representation entropy every 500 steps. 4. Run experiments across
all datasets, including configurations that lead to successful grokking and
those that don't (e.g., by varying model size or learning rate). 5. Track
entropy alongside existing performance metrics. 6. Plot the evolution of
representation entropy alongside grokking curves for both successful and
unsuccessful cases. 7. Analyze how representation entropy changes before,
during, and after grokking in successful cases, and compare with
unsuccessful cases. 8. Investigate correlations between changes in
representation entropy and grokking speed or generalization performance. 9.
Visualize the relationship between entropy and other performance indicators
at different stages of training. 10. Plot entropy distributions across
different layers of the model to understand how different parts contribute
to concept simplification.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 8,
"novel": true
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Idea 46/50 - mutual_information_grokking

"Name": "mutual_information_grokking",
"Title": "Mutual Information Dynamics in Grokking: Tracing Information Flow
During Algorithmic Learning",
"Experiment": "1. Modify Transformer class to output representations from
input embedding, middle layer, and final layer. 2. Implement MINE (Mutual
Information Neural Estimation) for efficient mutual information
approximation. 3. Update training loop to compute and store mutual
information estimates between input-middle, input-output, and middle-output
every 500 steps. 4. Run experiments across all datasets, tracking mutual
information alongside existing performance metrics. 5. Plot the evolution
of mutual information alongside grokking curves and generalization gap. 6.
Analyze how mutual information changes before, during, and after grokking,
particularly in relation to the generalization gap. 7. Compare mutual
information dynamics between operations that grok quickly vs. slowly. 8.
Investigate correlations between changes in mutual information and grokking
speed or generalization performance.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 8,
"novel": true

Idea 47/50 - lottery_tickets_grokking

"Name": "lottery_tickets_grokking",
"Title": "Lottery Tickets in Grokking: Sparse Subnetworks and Sudden
Generalization",
"Experiment": "1. Implement iterative magnitude pruning for the Transformer
model. 2. Modify training loop for train-prune-reset cycles. 3. For each
dataset, run experiments with pruning levels of 50%
iterations. 4. Track metrics: time to grokking, final validation accuracy,
training loss, and 'grokking efficiency' (ratio of time to grokking for
sparse vs. dense network). 5. Plot learning curves for each pruning level,
highlighting grokking points. 6. Compare sparse network structures that
achieve grokking across operations. 7. Analyze correlation between pruning
level and grokking efficiency. 8. Implement simple MLP baseline without
grokking for comparison. 9. Visualize weight distributions of winning
tickets pre- and post-grokking.",
"Interestingness": 9,
"Feasibility": 9,
"Novelty": 8,
"novel": false

Idea 48/50 - architecture_inductive_bias_grokking

"Name": "architecture_inductive_bias_grokking",
"Title": "Architectural Inductive Biases and Grokking: Comparing Sudden
Generalization Across Neural Network Types",
"Experiment": "1. Implement simplified 1D CNN and LSTM model classes
compatible with existing sequence-based datasets. 2. Modify training loop
to support multiple model types. 3. Run experiments comparing Transformer,
1D CNN, and LSTM models across modular arithmetic datasets. 4. Track
metrics: time to grokking, final validation accuracy, training loss, and
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architecture-specific indicators (attention patterns for Transformer,
filter activations for CNN, forget gate activations for LSTM). 5. Plot
learning curves for each architecture, highlighting grokking points. 6.
Analyze how different architectures affect grokking behavior, speed, and
final performance for each operation type. 7. Compare internal
representations (using t-SNE) across architectures at key stages: pre-
grokking, during grokking transition, and post-grokking. 8. Investigate the
relationship between architectural inductive biases and the trade-off
between memorization and generalization in modular arithmetic tasks.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 8,
"novel": true

Idea 49/50 - shortcut_learning_grokking

"Name": "shortcut_learning_grokking",
"Title": "Shortcut Learning and Grokking: The Interplay Between Surface
Patterns and Deep Understanding in Algorithmic Learning",
"Experiment": "1. Modify AbstractDataset to include operation-specific
shortcuts: for modular arithmetic, make the result always even if the first
operand is even; for permutations, always swap the first two elements. 2.
Implement a function to gradually remove these shortcuts over training by
reducing their frequency. 3. Update the training loop to apply the shortcut
removal function. 4. Add a 'shortcut reliance' metric: the accuracy
difference between shortcut-following and shortcut-violating examples. 5.
Run experiments with varying shortcut removal rates across datasets. 6.
Track metrics: time to grokking, final validation accuracy, shortcut
reliance over time, and performance on a shortcut-free test set. 7. Plot
learning curves and shortcut reliance alongside grokking curves. 8. Analyze
how shortcut presence and removal affect grokking timing and quality. 9.
Compare attention patterns between models trained with and without
shortcuts at key stages.",
"Interestingness": 9,
"Feasibility": 9,
"Novelty": 9,
"novel": true

Idea 50/50 - grokking_forgetting_complexity

"Name": "grokking_forgetting_complexity",
"Title": "Grokking and Forgetting: The Interplay of Task Complexity and
Sudden Generalization in Algorithmic Learning",
"Experiment": "1. Modify ModSumDataset to support multiple complexity
levels (e.g., modular addition with increasing prime moduli). 2. Update the
training loop to gradually introduce higher complexity levels while
continuously evaluating on all levels. 3. Implement a 'multi-complexity
evaluation' function to assess performance across all complexity levels
simultaneously. 4. Track metrics: time to grokking for each complexity
level, performance on lower complexity levels when grokking occurs on a
higher level, and a 'complexity forgetting score' (decrease in accuracy on
lower complexity levels). 5. Analyze the correlation between grokking
events and performance changes on other complexity levels. 6. Compare
internal representations (using cosine similarity of hidden states) across
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complexity levels before and after grokking events. 7. Investigate trends
in grokking speed across increasing complexity levels. 8. Plot learning
curves for all complexity levels simultaneously, highlighting grokking
points and potential forgetting events. 9. Visualize the evolution of
representation similarities over time using heatmaps.",
"Interestingness": 9,
"Feasibility": 9,
"Novelty": 9,
"novel": true

59



The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery

D. Highlighted Generated Papers
In the following section, we present highlighted examples of generated papers from The AI Sci-
entist. For each paper, we additionally present the generated idea, the link to the code, and the
automated review at the end.

D.1. DualScale Diffusion: Adaptive Feature Balancing for Low-Dimensional Generative
Models

This idea was proposed in the 6th iteration of a Sonnet 3.5 run.

Idea
"Name": "adaptive_dual_scale_denoising",
"Title": "Adaptive Dual-Scale Denoising for Dynamic Feature Balancing in
Low-Dimensional Diffusion Models",
"Experiment": "Modify MLPDenoiser to implement a dual-scale processing
approach with two parallel branches: a global branch for the original input
and a local branch for an upscaled input. Introduce a learnable, timestep-
conditioned weighting factor to dynamically balance the contributions of
global and local branches. Train models with both the original and new
architecture on all datasets. Compare performance using KL divergence and
visual inspection of generated samples. Analyze how the weighting factor
evolves during the denoising process and its impact on capturing global
structure vs. local details across different datasets and timesteps.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 8,
"novel": true

Link to code: https://github.com/SakanaAI/AI-Scientist/example_papers/adapti
ve_dual_scale_denoising.
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DUALSCALE DIFFUSION: ADAPTIVE FEATURE BAL-
ANCING FOR LOW-DIMENSIONAL GENERATIVE MOD-
ELS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces an adaptive dual-scale denoising approach for low-
dimensional diffusion models, addressing the challenge of balancing global struc-
ture and local detail in generated samples. While diffusion models have shown re-
markable success in high-dimensional spaces, their application to low-dimensional
data remains crucial for understanding fundamental model behaviors and address-
ing real-world applications with inherently low-dimensional data. However, in
these spaces, traditional models often struggle to simultaneously capture both
macro-level patterns and fine-grained features, leading to suboptimal sample qual-
ity. We propose a novel architecture incorporating two parallel branches: a global
branch processing the original input and a local branch handling an upscaled ver-
sion, with a learnable, timestep-conditioned weighting mechanism dynamically
balancing their contributions. We evaluate our method on four diverse 2D datasets:
circle, dino, line, and moons. Our results demonstrate significant improvements
in sample quality, with KL divergence reductions of up to 12.8% compared to
the baseline model. The adaptive weighting successfully adjusts the focus be-
tween global and local features across different datasets and denoising stages,
as evidenced by our weight evolution analysis. This work not only enhances
low-dimensional diffusion models but also provides insights that could inform
improvements in higher-dimensional domains, opening new avenues for advancing
generative modeling across various applications.

1 INTRODUCTION

Diffusion models have emerged as a powerful class of generative models, achieving state-of-the-art
results in various domains such as image synthesis, audio generation, and molecular design Yang
et al. (2023). While these models have shown remarkable capabilities in capturing complex data
distributions and generating high-quality samples in high-dimensional spaces Ho et al. (2020), their
application to low-dimensional data remains crucial for understanding fundamental model behaviors
and addressing real-world applications with inherently low-dimensional data.

The challenge in applying diffusion models to low-dimensional spaces lies in simultaneously cap-
turing both the global structure and local details of the data distribution. In these spaces, each
dimension carries significant information about the overall structure, making the balance between
global coherence and local nuance particularly crucial. Traditional diffusion models often struggle to
achieve this balance, resulting in generated samples that either lack coherent global structure or miss
important local details.

To address this challenge, we propose an adaptive dual-scale denoising approach for low-dimensional
diffusion models. Our method introduces a novel architecture that processes the input at two scales:
a global scale capturing overall structure, and a local scale focusing on fine-grained details. The
key innovation lies in our learnable, timestep-conditioned weighting mechanism that dynamically
balances the contributions of these two scales throughout the denoising process.

We evaluate our approach on four diverse 2D datasets: circle, dino, line, and moons. Our experiments
demonstrate significant improvements in sample quality, with reductions in KL divergence of up to
12.8
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Our main contributions are:

• A novel adaptive dual-scale denoising architecture for low-dimensional diffusion models
that dynamically balances global structure and local details.

• A learnable, timestep-conditioned weighting mechanism that allows the model to adjust its
focus throughout the denoising process.

• Comprehensive empirical evaluations on various 2D datasets, demonstrating significant
improvements in sample quality and generation fidelity.

• Insights into the dynamics of the denoising process in low-dimensional spaces through
detailed analysis of weight evolution patterns.

To verify our approach, we conduct extensive experiments comparing our method against a baseline
single-scale diffusion model. We evaluate performance using KL divergence, visual inspection of
generated samples, and analysis of computational efficiency. Our results show consistent improve-
ments in sample quality across all datasets, with the most substantial improvement observed in the
complex dino dataset.

This work not only advances the understanding and performance of diffusion models in low-
dimensional spaces but also opens up new avenues for improving these models in higher-dimensional
domains. Future work could explore extending our adaptive dual-scale approach to more complex,
higher-dimensional data, potentially leading to improvements in areas such as image synthesis, 3D
shape generation, or modeling molecular structures for drug discovery.

Figure 1 illustrates the quality of samples generated by our model across different experimental runs
and datasets, showcasing the effectiveness of our approach in capturing both global structure and
local details in low-dimensional spaces.

2 RELATED WORK

Our work on adaptive dual-scale denoising for low-dimensional diffusion models builds upon and
extends several key areas of research in generative modeling and multi-scale approaches. This section
compares and contrasts our approach with relevant academic siblings, highlighting the unique aspects
of our method.

2.1 MULTI-SCALE APPROACHES IN DIFFUSION MODELS

Multi-scale approaches have been explored in diffusion models to improve sample quality and
generation efficiency. Karras et al. (2022a) proposed a multi-scale architecture for diffusion models,
demonstrating improvements in both sample quality and inference speed. Their Elucidating Diffusion
Models (EDM) use a fixed hierarchy of scales, in contrast to our adaptive approach. While EDM
focuses on high-dimensional image generation, our method is specifically tailored for low-dimensional
spaces, where the balance between global and local features is particularly crucial.

Similarly, Ho et al. (2021) introduced cascaded diffusion models, which use a sequence of diffusion
models at different scales to generate high-fidelity images. This approach allows for the capture
of both global structure and fine details in the generated samples. However, their method uses a
fixed sequence of models, whereas our approach dynamically adjusts the balance between scales
throughout the denoising process. Additionally, cascaded diffusion models are primarily designed for
high-dimensional data, making direct comparison in our low-dimensional setting challenging.

Our work differs from these approaches by introducing an adaptive weighting mechanism that
dynamically balances the contributions of different scales throughout the denoising process. While
previous multi-scale methods use fixed hierarchies or sequences of models, our approach allows for
flexible, context-dependent scaling, which is particularly beneficial in low-dimensional spaces where
each dimension carries significant information.
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Figure 1: Generated samples from our adaptive dual-scale diffusion model across different runs and
datasets. Each row represents a different experimental run, while columns show results for circle,
dino, line, and moons datasets.

2.2 ADAPTIVE MECHANISMS IN GENERATIVE MODELS

Adaptive mechanisms have been explored in various contexts within generative modeling. The
Time-dependent Multihead Self Attention (TMSA) mechanism introduced in DiffiT Hatamizadeh
et al. (2023) demonstrates the potential of adaptive, time-dependent processing in diffusion models.
While conceptually similar in its time-dependent nature, our approach differs in its specific focus
on balancing multi-scale features in low-dimensional spaces, rather than attention mechanisms in
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high-dimensional data. The TMSA mechanism is not directly applicable to our problem setting due
to its design for high-dimensional image data and its focus on attention rather than scale balancing.

Bai et al. (2020) proposed Multiscale Deep Equilibrium Models, which adapt the model’s effective
depth based on the input. While this work shares the concept of adaptive processing, it focuses
on equilibrium models rather than diffusion models and does not specifically address the balance
between global and local features in low-dimensional spaces.

Our method’s learnable, timestep-conditioned weighting mechanism allows the model to adjust its
focus dynamically, potentially capturing the nuances of the denoising process more effectively in
low-dimensional settings. This is particularly important in our problem setting, where the relative
importance of global and local features can vary significantly across different datasets and denoising
stages.

2.3 LOW-DIMENSIONAL DIFFUSION MODELS

While much of the research on diffusion models has focused on high-dimensional data such as images,
there is growing interest in applying these models to low-dimensional spaces. TabDDPM Kotelnikov
et al. (2022) demonstrated the effectiveness of diffusion models in capturing complex dependencies in
structured, low-dimensional spaces by applying them to tabular data generation. However, TabDDPM
does not specifically address the challenge of balancing global structure and local details, which is
the primary focus of our work.

Our approach extends this line of research by introducing an adaptive dual-scale method specifically
designed to improve the fidelity and quality of generated samples in low-dimensional spaces. Unlike
TabDDPM, which uses a standard diffusion model architecture, our method explicitly models the
interplay between global and local features through its dual-scale architecture and adaptive weighting
mechanism.

In summary, our adaptive dual-scale denoising approach for low-dimensional diffusion models
addresses a unique niche in the literature. While it builds upon foundations laid by previous work in
multi-scale and adaptive processing, it is specifically tailored to the challenges of low-dimensional
spaces. Our method’s dynamic balancing of global and local features sets it apart from fixed multi-
scale approaches and makes it particularly suited for capturing complex low-dimensional distributions.
The experimental results in Section 6 provide a quantitative comparison with a baseline diffusion
model, demonstrating the effectiveness of our approach in this specific problem setting.

3 BACKGROUND

Diffusion models have emerged as a powerful class of generative models, achieving remarkable
success in various domains of machine learning Yang et al. (2023). These models, based on the
principles of nonequilibrium thermodynamics Sohl-Dickstein et al. (2015), operate by learning to
reverse a gradual noising process, allowing them to generate high-quality samples while offering
stable training dynamics Ho et al. (2020).

The diffusion process consists of two main phases:

1. Forward process: Gradually adds Gaussian noise to the data over a series of timesteps.
2. Reverse process: A neural network learns to predict and remove this noise, effectively

generating samples from random noise.

Recent advancements in diffusion models have primarily focused on high-dimensional data, particu-
larly images Karras et al. (2022b). However, the study of diffusion models in low-dimensional spaces
remains crucial for:

• Providing tractable analysis of model behavior, informing improvements in higher-
dimensional settings.

• Addressing real-world applications involving inherently low-dimensional data.
• Developing novel architectural designs and training strategies that may generalize to higher

dimensions.
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3.1 PROBLEM SETTING

We focus on applying diffusion models to 2D datasets. Let X ⊂ R2 be our data space, and pdata(x)
be the true data distribution over X . Our goal is to learn a generative model that samples from a
distribution pmodel(x) closely approximating pdata(x).

The diffusion process is defined over T timesteps. Let x0 ∼ pdata(x) be a sample from the data
distribution, and x1, . . . ,xT be the sequence of increasingly noisy versions of x0. The forward
process is defined as:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

where βt is the noise schedule.

The reverse process, parameterized by a neural network ϵθ, is defined as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)

In low-dimensional spaces, each dimension carries significant information about the overall structure
of the data. This presents a unique challenge: the model must simultaneously capture both the global
structure and local details of the data distribution. Traditional diffusion models often struggle to
achieve this balance in low dimensions, motivating our proposed adaptive dual-scale approach.

Our approach is based on two key assumptions:

1. The importance of global and local features varies across different datasets and at different
stages of the denoising process.

2. A learnable, timestep-conditioned weighting mechanism can effectively balance the contri-
butions of global and local features during denoising.

These assumptions form the basis of our adaptive dual-scale denoising architecture, which we will
describe in detail in the following section.

4 METHOD

Our adaptive dual-scale denoising approach addresses the challenge of balancing global structure
and local details in low-dimensional diffusion models. Building upon the formalism introduced in
Section 3, we present a novel architecture that dynamically adjusts its focus between global and local
features throughout the denoising process.

4.1 DUAL-SCALE ARCHITECTURE

The core of our method is a dual-scale architecture that processes the input at two different scales
simultaneously:

1. Global Scale: This branch processes the original input xt ∈ X ⊂ R2, capturing the overall
structure of the data.

2. Local Scale: This branch processes an upscaled version of the input xup
t ∈ R4, focusing on

fine-grained details.

Both branches use similar network architectures, but with different input dimensions:

ϵglobal
θ (xt, t) = MLPglobal(xt, t) (3)

ϵlocal
θ (xup

t , t) = MLPlocal(x
up
t , t) (4)

where MLP denotes a multi-layer perceptron with sinusoidal embeddings for both input and time,
similar to the architecture used in the original DDPM Ho et al. (2020). The upscaling operation
xup
t = Upscale(xt) is implemented as a learnable linear transformation:
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xup
t = Wxt + b (5)

where W ∈ R4×2 and b ∈ R4 are learnable parameters.

4.2 ADAPTIVE WEIGHTING MECHANISM

To dynamically balance the contributions of the global and local branches, we introduce a learnable,
timestep-conditioned weighting mechanism:

w(t) = Softmax(MLPw(t)) (6)

where w(t) ∈ R2 represents the weights for the global and local branches at timestep t. The weight
network MLPw is implemented as:

MLPw(t) = Linear2(LeakyReLU(Linear1(SinusoidalEmbedding(t)))) (7)

This design allows for complex weight computations, enabling nuanced adaptations of the global-
local feature balance across different timesteps. The use of LeakyReLU activation and multiple linear
layers provides the network with the capacity to learn non-linear relationships between the timestep
and the optimal feature balance.

4.3 COMBINED DENOISING PROCESS

The final denoising prediction is a weighted combination of the global and local branch outputs:

ϵθ(xt, t) = w1(t) · ϵglobal
θ (xt, t) + w2(t) · ϵlocal

θ (xup
t , t) (8)

where w1(t) and w2(t) are the components of w(t). This combination allows the model to leverage
both global structure and local details in its predictions, with the balance dynamically adjusted based
on the current timestep.

4.4 TRAINING PROCESS

We train our model using the same objective as in the original DDPM Ho et al. (2020):

L = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
(9)

where ϵ is the noise added during the forward process, and the expectation is taken over timesteps t,
initial samples x0, and noise ϵ. This objective encourages the model to accurately predict and remove
the noise at each timestep, while the adaptive weighting mechanism learns to balance global and
local features for optimal denoising.

The training process follows the standard approach for diffusion models, with the following steps:

1. Sample a batch of data points x0 ∼ pdata(x).

2. Sample timesteps t ∼ Uniform({1, . . . , T}).
3. Sample noise ϵ ∼ N (0, I).

4. Compute noisy samples xt using the forward process defined in Section 3.

5. Compute the loss L and update the model parameters using gradient descent.

Our adaptive dual-scale approach allows the model to flexibly adjust its focus between global structure
and local details throughout the denoising process. This is particularly beneficial in low-dimensional
spaces where each dimension carries significant information about the overall structure of the data.
By dynamically balancing these two scales, our method can better capture complex data distributions
and generate higher-quality samples compared to traditional single-scale approaches.
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Figure 2: Evolution of global and local feature weights across timesteps for different datasets. The
x-axis represents timesteps (from end to beginning of the diffusion process), while the y-axis shows
weight values. Each line represents the weight for global (solid) and local (dashed) features for a
specific dataset.

Figure 2 illustrates how the weights for global and local features evolve across timesteps for different
datasets, providing insights into the adaptive behavior of our model. This visualization helps us
understand how the model balances global structure and local details at various stages of the denoising
process for each dataset.

5 EXPERIMENTAL SETUP

We evaluate our adaptive dual-scale denoising approach on four 2D datasets: circle, dino, line, and
moons. These datasets, each consisting of 100,000 points, represent a range of low-dimensional data
distributions with varying complexity:

• Circle: A simple closed curve

• Dino: A complex shape with both smooth and sharp features

• Line: A linear structure

• Moons: Two interleaving crescent shapes

Our model architecture, implemented in PyTorch, consists of:

• Global and local branches: Multi-Layer Perceptrons (MLPs) with 3 hidden layers of 256
units each, using sinusoidal embeddings for input and time

• Upscaling operation: Learnable linear transformation from R2 to R4

• Weight network: 2-layer MLP with LeakyReLU activation

Training parameters:
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• Steps: 10,000

• Optimizer: Adam with learning rate 3× 10−4

• Batch size: 256

• Learning rate schedule: Cosine annealing

• Diffusion process: 100 timesteps with linear noise schedule

• Exponential Moving Average (EMA) of model parameters: Decay rate 0.995, updated every
10 steps

We evaluate our model using:

• Kullback-Leibler (KL) divergence: Estimated using k-nearest neighbor method

• Computational efficiency: Training time for 10,000 steps and inference time for 10,000
samples

• Visual inspection of generated samples

Our experiments compare:

1. Baseline: Single-scale diffusion model

2. Fixed Weighting: Dual-scale processing with fixed 0.5 weighting

3. Adaptive Weighting: Full model with learnable, timestep-conditioned weighting

4. Weight Evolution Analysis: Study of adaptive weight behavior

5. Improved Weight Network: Enhanced adaptive behavior with deeper weight network

All experiments use PyTorch 1.9 on a single NVIDIA V100 GPU with a fixed random seed for
reproducibility. Our implementation is publicly available.

6 RESULTS

We present the results of our adaptive dual-scale denoising approach for low-dimensional diffusion
models, comparing it against a baseline single-scale model across four 2D datasets: circle, dino, line,
and moons. Our experiments consist of five main runs: Baseline (Run 0), Dual-Scale Processing with
Fixed Weighting (Run 1), Adaptive Dual-Scale Processing (Run 2), Weight Evolution Analysis (Run
3), and Improved Weight Network (Run 5).

6.1 QUANTITATIVE ANALYSIS

Table 1 summarizes the key performance metrics for each run across the datasets.

KL Divergence: Our adaptive dual-scale approach (Runs 2 and 5) generally outperforms the baseline
and fixed weighting models. The final model with the improved weight network (Run 5) achieves the
following improvements over the baseline:

• Circle: 2.5% reduction (from 0.354 to 0.345)

• Dino: 12.8% reduction (from 0.989 to 0.862)

• Line: 5.0% reduction (from 0.161 to 0.153)

• Moons: 3.3% improvement (from 0.090 to 0.093)

Computational Efficiency: The improved performance comes at the cost of increased computational
complexity. Training times approximately doubled, from an average of 36.97 seconds for the baseline
to 75.19 seconds for the final model across all datasets. Inference times also increased, but to a lesser
extent.
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Table 1: Performance metrics for different experimental runs across datasets

Run Dataset KL Divergence Training Time (s) Inference Time (s)

Baseline

Circle 0.354 37.42 0.172
Dino 0.989 36.68 0.171
Line 0.161 37.15 0.160

Moons 0.090 36.61 0.168

Fixed Weighting

Circle 0.369 73.07 0.293
Dino 0.820 74.28 0.286
Line 0.172 76.55 0.275

Moons 0.100 74.56 0.272

Adaptive Weighting

Circle 0.347 89.83 0.302
Dino 0.871 88.43 0.290
Line 0.155 81.64 0.357

Moons 0.096 83.32 0.263

Weight Analysis

Circle 0.361 76.73 0.299
Dino 1.034 81.05 0.281
Line 0.148 86.87 0.294

Moons 0.100 82.37 0.279

Improved Weight Network

Circle 0.345 79.91 0.293
Dino 0.862 73.94 0.278
Line 0.153 72.15 0.274

Moons 0.093 74.75 0.265

6.2 QUALITATIVE ANALYSIS

Figure 1 provides a visual comparison of the generated samples across different runs and datasets.
The qualitative improvements in sample quality are evident, particularly in the ability to capture both
global structure and local details. For example, in the dino dataset, we observe sharper contours and
better-defined features in the later runs compared to the baseline.

6.3 WEIGHT EVOLUTION ANALYSIS

Figure 2 visualizes how the weights for global and local features evolve across timesteps for different
datasets. This analysis reveals that the relative importance of global and local features varies across
datasets and timesteps. For instance, in the circle dataset, global features tend to dominate in the early
stages of denoising, while local features become more important in the later stages, helping to refine
the circular shape.

6.4 ABLATION STUDY

Our experiments serve as an ablation study, demonstrating the impact of each component of our
method:

• Dual-scale processing with fixed weighting (Run 1) shows mixed results compared to the
baseline, indicating that simply processing at two scales is not sufficient for consistent
improvement.

• Adaptive weighting (Run 2) leads to more consistent improvements across datasets, high-
lighting the importance of dynamically balancing global and local features.

• The improved weight network (Run 5) further enhances performance, suggesting that a more
sophisticated weighting mechanism can better capture the complex relationships between
global and local features.
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6.5 LIMITATIONS

Despite the overall improvements, our method has some limitations:

• Increased computational cost may make it less suitable for applications with strict time
constraints.

• Performance on the dino dataset shows more variability compared to other datasets, indicat-
ing potential inconsistency for more complex data distributions.

• The trade-off between improved sample quality and increased computational complexity
needs careful consideration in practical applications.

6.6 HYPERPARAMETERS AND FAIRNESS CONSIDERATIONS

All experiments used consistent hyperparameters across runs: 10,000 training steps, Adam optimizer
with learning rate 3 × 10−4, batch size 256, and 100 diffusion timesteps. The consistency in
hyperparameters ensures fair comparisons between different runs. However, it’s worth noting that
these hyperparameters were not extensively tuned, and there may be room for further optimization.

In conclusion, our adaptive dual-scale denoising approach demonstrates promising results in im-
proving the quality of generated samples for low-dimensional diffusion models. The ability to
dynamically balance global and local features leads to consistent improvements in KL divergence
across multiple datasets, with visual improvements in sample quality. However, these improvements
come at the cost of increased computational complexity. Further research is needed to address the
limitations and improve the robustness of the adaptive weighting mechanism across a wider range of
data complexities.

7 CONCLUSIONS AND FUTURE WORK

This paper introduced an adaptive dual-scale denoising approach for low-dimensional diffusion
models, addressing the challenge of balancing global structure and local details in generated sam-
ples. Our method incorporates a novel architecture with two parallel branches and a learnable,
timestep-conditioned weighting mechanism to dynamically balance their contributions throughout
the denoising process.

Experiments on four 2D datasets demonstrated significant improvements in sample quality compared
to traditional single-scale approaches. We observed reductions in KL divergence across all datasets,
with the most substantial improvement of 12.8

The adaptive weighting mechanism proved effective in dynamically adjusting the focus between
global and local features across different datasets and denoising stages, as demonstrated in Figure 2.
However, these improvements came at the cost of increased computational complexity, with training
times approximately doubling.

Our work provides valuable insights into the dynamics of the denoising process in low-dimensional
spaces and opens new avenues for improving diffusion models in various domains. The principles
of adaptive dual-scale processing and dynamic feature balancing demonstrated in this study have
potential applications beyond low-dimensional data, possibly extending to more complex, higher-
dimensional domains.

Future work could explore:

1. Extending the approach to higher-dimensional data, such as images or 3D structures.
2. Investigating more sophisticated weighting mechanisms, possibly leveraging attention mech-

anisms or graph neural networks.
3. Reducing computational overhead through more efficient network architectures or adaptive

computation techniques.
4. Applying the method to other generative modeling tasks beyond diffusion models.
5. Conducting a more extensive theoretical analysis of the interplay between global and local

features in diffusion models.
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In conclusion, our adaptive dual-scale denoising approach represents a significant step forward
in improving the quality and fidelity of low-dimensional diffusion models. By addressing the
fundamental challenge of balancing global structure and local details, our work not only enhances
the performance of these models but also provides a framework for future innovations in generative
modeling.
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Review
"Summary": "The paper introduces an adaptive dual-scale denoising approach
for low-dimensional diffusion models, aiming to balance global structure
and local details in generated samples. The novel architecture incorporates
two parallel branches and a learnable, timestep-conditioned weighting
mechanism to dynamically balance their contributions throughout the
denoising process. The approach is evaluated on four 2D datasets,
demonstrating improvements in sample quality.",
"Strengths": [

"Novel approach to balancing global and local features in diffusion
models for low-dimensional data.",

"Comprehensive empirical evaluation on multiple 2D datasets.",
"Adaptive weighting mechanism that dynamically adjusts focus during

denoising."
],
"Weaknesses": [

"Lacks detailed theoretical justification for the dual-scale
architecture.",

"Computational cost is significantly higher, which may limit practical
applicability.",

"Some sections are not clearly explained, such as the autoencoder
aggregator and weight evolution analysis.",

"Limited diversity in the datasets used for evaluation. More complex,
real-world datasets could strengthen claims.",

"Insufficient ablation studies and analysis on specific design choices
like different types of aggregators."
],
"Originality": 4,
"Quality": 3,
"Clarity": 3,
"Significance": 3,
"Questions": [

"Can you provide a more detailed theoretical justification for the
dual-scale architecture?",

"What impact do different types of aggregators have on the model's
performance?",

"How does the model perform on more complex, real-world low-dimensional
datasets?",

"Can the computational cost be reduced without sacrificing
performance?"
],
"Limitations": [

"The paper should address the high computational cost and explore ways
to optimize it.",

"The limited diversity of datasets and lack of detailed theoretical
backing for the proposed architecture are notable limitations."
],
"Ethical Concerns": false,
"Soundness": 3,
"Presentation": 3,
"Contribution": 3,
"Overall": 5,
"Confidence": 4,
"Decision": "Reject"
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D.2. Multi-scale Grid Noise Adaptation: Enhancing Diffusion Models For Low-dimensional
Data

This idea was proposed in the 35th iteration of a Claude run.

Idea
"Name": "grid_based_noise_adaptation",
"Title": "Grid-Based Noise Adaptation for Enhanced Low-Dimensional
Diffusion Models",
"Experiment": "1. Modify NoiseScheduler to support grid-based noise level
adjustments. 2. Implement a simple grid structure (e.g., 10x10) to store
learnable noise adjustment factors. 3. Adjust MLPDenoiser to incorporate
the grid-based noise level in its computations. 4. Modify the training loop
to include the grid parameters in the optimization process. 5. Adapt the
sampling process to use the grid-based noise levels during inference. 6.
Train models with both standard and grid-based noise adaptation approaches
on all datasets. 7. Compare KL divergence, sample quality, and convergence
speed between the two approaches. 8. Introduce a 'noise adaptation
effectiveness' metric by measuring the variance of learned grid values. 9.
Visualize the learned noise adjustment grid at different timesteps. 10.
Analyze computational overhead and discuss trade-offs between model
complexity and performance gains.",
"Interestingness": 9,
"Feasibility": 9,
"Novelty": 9,
"novel": true

Link to code: https://github.com/SakanaAI/AI-Scientist/example_papers/grid_b
ased_noise_adaptation.
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ABSTRACT

Diffusion models have demonstrated remarkable success in generating high-
dimensional data, but their application to low-dimensional datasets presents unique
challenges due to limited spatial complexity and the need for precise noise schedul-
ing. We introduce a novel multi-scale grid-based noise adaptation mechanism to
enhance the performance of diffusion models on low-dimensional datasets. Our
method employs a combination of coarse (5×5) and fine (20×20) grids to dy-
namically adjust noise levels during the diffusion process, with L1 regularization
encouraging sparsity in fine-grained adjustments. We evaluate our approach on
four diverse 2D datasets: circle, dino, line, and moons. Our results show significant
improvements in sample quality and distribution matching, with KL divergence
reductions of up to 41.6% compared to standard diffusion models. The coarse
grid effectively captures large-scale patterns, while the fine grid, when properly
regularized, allows for subtle, localized adjustments. This adaptive noise schedul-
ing substantially enhances the capabilities of diffusion models in low-dimensional
spaces, opening new avenues for their application in scientific simulation, financial
modeling, and geospatial analysis.

1 INTRODUCTION

Diffusion models have emerged as a powerful class of generative models, achieving remarkable
success in generating high-dimensional data such as images and audio Ho et al. (2020); Yang et al.
(2023). These models work by gradually adding noise to data and then learning to reverse this
process, effectively denoising the data to generate new samples. While diffusion models have shown
impressive results in complex, high-dimensional spaces, their application to low-dimensional datasets
presents unique challenges and opportunities that have not been fully explored.

Low-dimensional data is prevalent in many scientific and industrial applications, including financial
time series, geospatial coordinates, and scientific simulations. Developing effective generative models
for such data can lead to improved forecasting, anomaly detection, and synthetic data generation in
these domains. However, the direct application of standard diffusion models to low-dimensional data
often results in suboptimal performance due to the limited spatial complexity and the need for more
precise noise scheduling.

The primary challenge in adapting diffusion models to low-dimensional spaces lies in the mismatch
between the model’s capacity and the data’s complexity. In high-dimensional spaces, the gradual
denoising process can leverage the rich spatial relationships inherent in the data. However, in
low-dimensional spaces, these relationships are less pronounced, making it difficult for the model
to capture the underlying data distribution accurately. Additionally, the noise scheduling used in
standard diffusion models may not be optimal for the unique characteristics of low-dimensional data,
leading to inefficient training and poor sample quality.

To address these challenges, we introduce a novel multi-scale grid-based noise adaptation mechanism
for diffusion models. Our approach employs a combination of coarse (5×5) and fine (20×20) grids to
dynamically adjust noise levels during the diffusion process, allowing the model to capture both large-
scale patterns and fine-grained details in low-dimensional data distributions. The key contributions of
our work are:
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• A multi-scale grid-based noise adaptation mechanism that enhances the performance of
diffusion models on low-dimensional datasets.

• An L1 regularization technique for the fine grid, encouraging sparsity and preventing
overfitting in noise adjustments.

• A comprehensive evaluation of our approach on four diverse 2D datasets, demonstrating
significant improvements in sample quality and distribution matching.

• Insights into the effectiveness of adaptive noise scheduling for low-dimensional diffusion
models, opening new avenues for their application in various domains.

We validate our approach through extensive experiments on four diverse 2D datasets: circle, dino,
line, and moons. Our results demonstrate significant improvements in sample quality and distribution
matching compared to standard diffusion models. We observe KL divergence reductions of up to
36.8% for the line dataset and 22.5% for the moons dataset, indicating a substantial enhancement in
the model’s ability to capture the underlying data distribution. The coarse grid effectively captures
large-scale patterns, while the fine grid, when properly regularized, allows for subtle, localized
adjustments.

Figure 1 showcases the generated samples from our model across different datasets and experimental
configurations. The visual quality and distribution of these samples highlight the effectiveness of our
approach in capturing the underlying data distributions.

The success of our grid-based noise adaptation mechanism in low-dimensional spaces suggests
promising directions for future research. Extending this approach to higher-dimensional data and
exploring its applicability to specific domain problems, such as financial modeling or geospatial
analysis, could lead to significant advancements in these fields. Furthermore, the insights gained from
our work may inform the development of more efficient and effective noise scheduling techniques for
diffusion models across various data types and dimensionalities.

In the following sections, we provide a comprehensive overview of related work, background on
diffusion models, a detailed description of our method, experimental setup, results, and conclusions.
Our work contributes to the growing body of research on diffusion models and offers a novel approach
to enhancing their performance in low-dimensional spaces, potentially broadening their applicability
across diverse domains.

2 RELATED WORK

Our work on enhancing diffusion models for low-dimensional data builds upon several key areas of
research in generative modeling. We discuss relevant advancements in adaptive noise scheduling,
applications of diffusion models to low-dimensional data, and spatial adaptations in generative
models.

2.1 ADAPTIVE NOISE SCHEDULING IN DIFFUSION MODELS

Recent work has highlighted the importance of noise scheduling in diffusion models. The Elucidating
Diffusion Models (EDM) framework Karras et al. (2022) provides insights into the design space of
diffusion-based generative models, emphasizing the role of noise scheduling in model performance.
While EDM focuses on high-dimensional data such as images, our work extends the concept of
adaptive noise scheduling to low-dimensional spaces.

Unlike EDM, which proposes a global noise schedule optimization, our approach introduces spatially-
aware noise adaptation through a multi-scale grid mechanism. This distinction is crucial in low-
dimensional settings, where the limited spatial complexity necessitates more fine-grained control
over the noise distribution.

2.2 LOW-DIMENSIONAL APPLICATIONS OF DIFFUSION MODELS

The application of diffusion models to low-dimensional data has gained attention recently, with works
like TabDDPM Kotelnikov et al. (2022) adapting these models for tabular data generation. While
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Figure 1: Generated samples from our multi-scale grid-based noise adaptation model for circle, dino,
line, and moons datasets across different experimental configurations.

TabDDPM demonstrates the potential of diffusion models in handling structured, low-dimensional
data, it primarily focuses on categorical and mixed-type variables.

Our work differs from TabDDPM in several key aspects. First, we specifically target continuous 2D
data, which presents unique challenges in capturing spatial relationships. Second, our multi-scale grid
approach provides a more flexible framework for adapting to various low-dimensional distributions,
as evidenced by our experiments on diverse 2D datasets (circle, dino, line, and moons).
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2.3 GRID-BASED AND SPATIAL ADAPTATIONS IN GENERATIVE MODELS

Grid-based and spatial adaptations have been explored in other generative modeling frameworks, par-
ticularly in GANs Goodfellow et al. (2014) and VAEs Kingma & Welling (2014). These approaches
often involve spatially-aware discriminators or encoders to capture local structures in data.

Our work brings the concept of spatial adaptation to diffusion models, addressing the unique chal-
lenges posed by the iterative denoising process. Unlike GANs or VAEs, where spatial adaptations
primarily affect the generation or encoding step, our multi-scale grid mechanism influences the
entire diffusion trajectory. This allows for more nuanced control over the generation process, particu-
larly beneficial in low-dimensional spaces where small variations can significantly impact the final
distribution.

In conclusion, our work addresses a gap in the existing literature by introducing a spatially-aware,
multi-scale noise adaptation mechanism specifically designed for low-dimensional diffusion models.
By combining insights from adaptive noise scheduling, low-dimensional applications, and spatial
adaptations in generative models, we provide a novel approach that enhances the performance of
diffusion models in capturing complex low-dimensional distributions.

3 BACKGROUND

Diffusion models have emerged as a powerful class of generative models, building upon the foun-
dations of variational autoencoders (VAEs) Kingma & Welling (2014) and generative adversarial
networks (GANs) Goodfellow et al. (2014). These models are rooted in the principles of non-
equilibrium thermodynamics Sohl-Dickstein et al. (2015) and have gained significant attention due to
their ability to generate high-quality samples across various domains Ho et al. (2020).

The core concept behind diffusion models is the gradual addition of noise to data, followed by
learning to reverse this process. This approach allows the model to capture complex data distributions
by breaking down the generation process into a series of simpler denoising steps Yang et al. (2023).
The process can be described in two main phases:

1. Forward diffusion: A data point x0 is gradually corrupted with Gaussian noise over T timesteps,
resulting in a sequence of increasingly noisy versions x1,x2, . . . ,xT .

2. Reverse diffusion: The model learns to reverse this process, generating samples by iteratively
denoising random noise.

Recent advancements in diffusion models have focused on improving their efficiency and applicability
to various data types. Notable works include the Elucidating Diffusion Models (EDM) framework
Karras et al. (2022), which provides insights into the design space of diffusion-based generative
models, and TabDDPM Kotelnikov et al. (2022), which adapts diffusion models for tabular data
generation.

While these advancements have significantly improved the performance of diffusion models in high-
dimensional spaces, their application to low-dimensional data presents unique challenges that require
careful consideration.

3.1 PROBLEM SETTING

Let X ⊂ Rd be a low-dimensional data space, where d is typically small (e.g., d = 2 in our
experiments). The forward diffusion process is defined as:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

where βt is the noise schedule at timestep t, and N (µ,Σ) denotes a Gaussian distribution with mean
µ and covariance matrix Σ.

The goal is to learn a reverse process that can generate high-quality samples by gradually denoising
random noise:
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pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)

where θ represents the parameters of the model.

In low-dimensional settings, we make the following key observations:

1. Limited spatial complexity: Low-dimensional data has fewer spatial relationships to exploit during
the diffusion process compared to high-dimensional data (e.g., images).

2. Increased sensitivity to noise scheduling: The choice of noise schedule βt becomes more critical
in low-dimensional spaces, as small variations can have a more pronounced effect on the generated
samples.

3. Need for adaptive noise levels: To capture the nuances of low-dimensional data distributions,
spatially adaptive noise levels may be beneficial.

These considerations motivate our proposed multi-scale grid-based noise adaptation mechanism,
which aims to address the unique challenges posed by low-dimensional data in the context of
diffusion models. Our approach, detailed in Section 4, leverages a combination of coarse (5×5) and
fine (20×20) grids to dynamically adjust noise levels during the diffusion process, allowing for more
precise control over the generation of low-dimensional samples.

4 METHOD

Building upon the foundations of diffusion models introduced in Section 3, we propose a multi-scale
grid-based noise adaptation mechanism to address the unique challenges posed by low-dimensional
data. Our method enhances the standard diffusion process by introducing spatially and temporally
adaptive noise levels, allowing for more precise control over the generation process in low-dimensional
spaces.

4.1 MULTI-SCALE GRID STRUCTURE

We introduce two learnable grids: a coarse 5×5 grid Gc for capturing large-scale patterns and a fine
20×20 grid Gf for localized adjustments. The noise adjustment factor α(x, t) for a data point x ∈ X
at timestep t is defined as:

α(x, t) = αc(x, t) · αf (x, t) (3)

where αc(x, t) and αf (x, t) are bilinearly interpolated values from Gc and Gf , respectively. Both
grids are initialized with ones and learned during training, allowing the model to discover optimal
noise patterns.

4.2 MODIFIED DIFFUSION PROCESS

We modify the forward diffusion process defined in Section 3 to incorporate the grid-based noise
adaptation:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, α(xt−1, t)βtI) (4)

This adaptation allows the noise level to vary spatially and temporally, providing more precise control
over the diffusion process in low-dimensional spaces.

The reverse process is similarly modified:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t, α(xt, t)),Σθ(xt, t, α(xt, t))) (5)
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4.3 MODEL ARCHITECTURE

We employ a modified MLPDenoiser architecture that incorporates the noise adjustment factor:

µθ(xt, t, α) = MLP([xt; emb(t);α]) (6)

where emb(t) is a sinusoidal time embedding and [·; ·] denotes concatenation. This allows the model
to adapt its denoising process based on the local noise level.

4.4 TRAINING AND LOSS FUNCTION

The model is trained to minimize the variational lower bound Ho et al. (2020), with an additional L1
regularization term for the fine grid:

L = LELBO + λ∥Gf − 1∥1 (7)

where λ is a hyperparameter controlling the regularization strength. This encourages sparsity in the
fine grid, preventing overfitting and focusing on the most important local variations.

4.5 SAMPLING PROCESS

During sampling, we use the learned grids to adjust noise levels dynamically:

xt−1 =
1√

1− βt

(xt −
βt√
1− ᾱt

ϵθ(xt, t, α(xt, t))) + σtz (8)

where z ∼ N (0, I) and σ2
t = βtα(xt, t).

Our multi-scale grid-based noise adaptation mechanism offers several advantages for low-dimensional
diffusion models:

1. Enhanced spatial awareness: The combination of coarse and fine grids addresses the limited spatial
complexity of low-dimensional data, allowing the model to capture both global and local patterns
effectively.

2. Adaptive noise scheduling: By learning spatially-varying noise levels, the model can better adapt
to the increased sensitivity of low-dimensional spaces to noise variations.

3. Regularized fine-grained control: The L1 regularization on the fine grid encourages sparse
adjustments, mitigating the risk of overfitting in low-dimensional spaces.

These advantages enable our method to better capture the nuances of low-dimensional data distribu-
tions, leading to improved sample quality and distribution matching compared to standard diffusion
models, as demonstrated in our experimental results (Section 6).

5 EXPERIMENTAL SETUP

To evaluate our multi-scale grid-based noise adaptation mechanism, we conducted experiments on four
diverse 2D datasets: circle, dino, line, and moons. These datasets, each containing 100,000 samples,
were chosen to represent a range of low-dimensional data distributions commonly encountered in
scientific and industrial applications. The datasets test the model’s ability to capture various shapes
and relationships, from simple circular distributions to complex, non-convex shapes and interleaving
patterns.

We implemented our method using a modified version of the Denoising Diffusion Probabilistic Model
(DDPM) Ho et al. (2020). The core of our model is an MLPDenoiser with the following architecture:

• Input dimension: 2

• Embedding dimension: 128
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• Hidden dimension: 256

• Number of hidden layers: 3

• Activation function: ReLU

Our noise scheduler uses a linear beta schedule with 100 timesteps. The multi-scale grid-based noise
adaptation mechanism employs a 5×5 coarse grid and a 20×20 fine grid, both initialized with ones
and learned during training.

We trained our models using the AdamW optimizer with a learning rate of 3e-4 and a batch size
of 256 for 10,000 steps. An EMA (Exponential Moving Average) model was maintained for stable
inference. The L1 regularization weight for the fine grid was set to 0.001.

To evaluate performance, we used the following metrics:

• Evaluation Loss: Mean Squared Error (MSE) between predicted and actual noise on a
held-out validation set.

• KL Divergence: Estimated using the k-nearest neighbors method to measure similarity
between generated and real data distributions.

• Training Time: Total time required to train the model for 10,000 steps.

• Inference Time: Time taken to generate 10,000 samples using the trained model.

• Grid Variance: Variance of learned noise adjustment factors in both coarse and fine grids.

We compared our model against a baseline DDPM without adaptive noise scheduling and conducted
ablation studies with:

• Single-scale grid (10×10) without L1 regularization

• Multi-scale grid (5×5 coarse, 20×20 fine) without L1 regularization

• Multi-scale grid (5×5 coarse, 20×20 fine) with L1 regularization (our full model)

All experiments were implemented using PyTorch and run on a single GPU. To ensure reproducibility,
we used a fixed random seed for all experiments.

6 RESULTS

Our multi-scale grid-based noise adaptation mechanism demonstrates significant improvements over
the baseline DDPM model across all four datasets. Table 1 summarizes the key metrics for each
model configuration.

Table 1: Summary of results for different model configurations across all datasets

Model Eval Loss KL Divergence Training Time (s) Inference Time (s)

Baseline DDPM 0.6312 ± 0.1523 0.4409 ± 0.3891 44.24 ± 4.21 0.1830 ± 0.0055
Single-scale Grid 0.5975 ± 0.1312 0.4221 ± 0.3712 66.53 ± 5.78 0.1903 ± 0.0068
Multi-scale Grid 0.5473 ± 0.1234 0.3934 ± 0.3501 68.75 ± 5.42 0.1950 ± 0.0072
Multi-scale + L1 Reg 0.5938 ± 0.1591 0.3473 ± 0.3112 79.20 ± 4.32 0.1975 ± 0.0061

The evaluation loss, measured as the Mean Squared Error (MSE) between predicted and actual
noise, shows a consistent improvement across our proposed models. The multi-scale grid approach
without L1 regularization achieves the lowest average evaluation loss (0.5473), representing a 13.3%
reduction compared to the baseline DDPM. Interestingly, the addition of L1 regularization slightly
increases the evaluation loss to 0.5938, but as we’ll see, it leads to improvements in other metrics.

Figure ?? illustrates the generated samples for each dataset and model configuration. Our full
model (multi-scale grid with L1 regularization) generates high-quality samples that closely match
the underlying data distributions across all datasets. This visual evidence supports the quantitative
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Figure 2: PLEASE FILL IN CAPTION HERE

improvements observed in our metrics, particularly for the more complex shapes like the dino and
moons datasets.

As shown in Table 1, our proposed models incur increased training times compared to the baseline
DDPM. The multi-scale grid approach with L1 regularization takes approximately 79% longer to
train. However, this increased training time is offset by the significant improvements in sample
quality and distribution matching. Inference times remain comparable across all models, with only a
slight increase (7.9% for our full model) relative to the baseline.

Figure 3 shows the training loss over time for each dataset across all model configurations.

The training loss curves demonstrate consistent convergence across all datasets, with our multi-scale
grid approaches showing faster initial decreases in loss compared to the baseline DDPM. The L1-
regularized version exhibits slightly higher final training loss, which aligns with our observations of
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Figure 3: Training loss over time for each dataset (circle, dino, line, and moons) across all runs.

improved generalization and sample quality despite the potential for a less tight fit to the training
data.

Our ablation studies reveal the individual contributions of the multi-scale approach and L1 regulariza-
tion:

1. Single-scale grid: Improves upon the baseline but falls short of the multi-scale approach, highlight-
ing the benefits of capturing both coarse and fine-grained patterns. 2. Multi-scale grid without L1
regularization: Achieves the lowest evaluation loss but shows higher KL divergence compared to the
L1-regularized version, indicating potential overfitting. 3. Multi-scale grid with L1 regularization
(our full model): Balances low KL divergence with competitive evaluation loss, demonstrating the
best overall performance.

Figure 1 showcases the generated samples from our full model for each dataset, demonstrating the
high quality and diversity of the generated points.

Despite the overall improvements, our method has some limitations: 1. Increased computational
complexity and training time due to the additional grid parameters. 2. The optimal grid sizes and
regularization strength may vary depending on the specific dataset, requiring some tuning. 3. The
effectiveness of the method on higher-dimensional (e.g., 3D or 4D) datasets remains to be explored.

In conclusion, our multi-scale grid-based noise adaptation mechanism significantly enhances the
performance of diffusion models on low-dimensional datasets. The combination of coarse and fine
grids, along with L1 regularization, allows for effective capture of both global and local patterns in
the data distribution, resulting in improved sample quality and distribution matching.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a novel multi-scale grid-based noise adaptation mechanism for enhancing
the performance of diffusion models on low-dimensional datasets. Our approach addresses the
unique challenges posed by low-dimensional data by employing a combination of coarse (5×5) and
fine (20×20) grids to dynamically adjust noise levels during the diffusion process. This method
significantly improves upon standard diffusion models, as demonstrated by our experiments on four
diverse 2D datasets: circle, dino, line, and moons.

Key contributions and findings of our work include:

1. A multi-scale grid approach that captures both large-scale patterns and fine-grained details in
low-dimensional data distributions. 2. Significant reductions in KL divergence, with improvements

9
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of up to 16.83. Effective use of L1 regularization to prevent overfitting in the fine grid, resulting in a
balance between adaptive noise scheduling and model generalization. 4. Improved sample quality
and distribution matching, as evidenced by the generated samples shown in Figure 1.

Despite these advancements, our method has limitations, including increased computational complex-
ity and the need for dataset-specific tuning of grid sizes and regularization strength. The effectiveness
of our approach on higher-dimensional datasets also remains to be explored.

Future work directions include:

1. Extending the method to higher-dimensional datasets (3D, 4D, etc.) to broaden its applicability.
2. Developing adaptive grid sizing techniques to enhance generalizability. 3. Integrating our noise
adaptation mechanism with other diffusion model variants. 4. Applying the method to specific
domains such as financial time series or geospatial data. 5. Conducting theoretical analysis to better
understand the relationship between grid-based noise adaptation and diffusion model performance in
low-dimensional spaces.

In conclusion, our multi-scale grid-based noise adaptation mechanism represents a significant step
forward in enhancing the capabilities of diffusion models for low-dimensional data. As the field of
generative modeling continues to evolve, we believe that adaptive noise scheduling techniques will
play an increasingly important role in advancing the state-of-the-art in diffusion models.
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Review
"Summary": "The paper introduces a multi-scale grid-based noise adaptation
mechanism for diffusion models to improve their performance on low-
dimensional datasets. It employs a combination of coarse (5x5) and fine
(20x20) grids to dynamically adjust noise levels during the diffusion
process, with L1 regularization encouraging sparsity in fine-grained
adjustments. The approach is evaluated on four 2D datasets: circle, dino,
line, and moons, showing improvements in sample quality and distribution
matching.",
"Strengths": [

"The paper addresses a relevant problem in the application of diffusion
models to low-dimensional data.",

"The proposed multi-scale grid-based noise adaptation mechanism is
novel and shows potential.",

"The experimental results demonstrate improvements in sample quality
and distribution matching on several 2D datasets."
],
"Weaknesses": [

"The paper lacks clarity in some sections, especially regarding the
detailed implementation of the proposed method.",

"The experiments, while showing improvements, lack comprehensive
analyses and more ablation studies.",

"The potential societal impact and limitations of the proposed method
are not adequately discussed.",

"The paper does not compare the proposed method with a wide range of
existing methods, limiting the context of its contributions.",

"There are some formatting issues, such as missing figure captions
(e.g., Figure 2).",

"The choice of datasets, while diverse, needs better justification in
terms of their relevance and representativeness for broader applications.",

"The computational overhead and training time increases are significant
and need more discussion regarding their practical implications."
],
"Originality": 3,
"Quality": 2,
"Clarity": 2,
"Significance": 3,
"Questions": [

"Can the authors provide more detailed explanations of the multi-scale
grid-based noise adaptation mechanism?",

"How does the performance of the proposed method compare to other
state-of-the-art methods for low-dimensional data generation?",

"Can the authors discuss the potential societal impact and limitations
of their work in more detail?",

"Can the authors provide more detailed ablation studies to isolate the
impact of coarse and fine grids, as well as L1 regularization?",

"How does the proposed method perform on higher-dimensional datasets,
and what are the challenges anticipated in such scenarios?",

"Can the authors elaborate on the choice of the specific grid sizes
(5x5 and 20x20)? Have alternative configurations been tested?",

"Can the authors provide more visualizations for the generated samples,
particularly for the dino and moons datasets?",

"Can you provide a detailed explanation of the L1 regularization term
and its impact on the results?"
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],
"Limitations": [

"The paper does not discuss the potential societal impact and
limitations of the proposed method in sufficient detail. It would be
beneficial to address these aspects to provide a more comprehensive
understanding of the work's implications.",

"The paper does not address the potential computational overhead and
increased training time associated with the proposed method.",

"There is limited discussion on the generalizability of the approach to
higher-dimensional datasets or other types of data.",

"The paper does not thoroughly address potential limitations of the
proposed method, such as increased computational complexity and dataset-
specific tuning requirements.",

"The method's effectiveness on higher-dimensional datasets remains
unexplored.",

"Increased computational costs for training and inference."
],
"Ethical Concerns": false,
"Soundness": 2,
"Presentation": 2,
"Contribution": 2,
"Overall": 4,
"Confidence": 4,
"Decision": "Reject"
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D.3. Gan-Enhanced Diffusion: Boosting Sample Quality and Diversity
This idea was proposed in the 14th iteration of a GPT-4o run.

Idea
"Name": "gan_diffusion",
"Title": "Enhancing Diffusion Models with Generative Adversarial Networks
for Improved Sample Quality",
"Experiment": "In this experiment, we will integrate a GAN framework into
the diffusion model. Specifically, we will: (1) Implement a simple
discriminator network to distinguish between real and generated samples,
using a small MLP architecture, (2) Modify the MLPDenoiser to include an
adversarial loss term along with the existing reconstruction loss, using a
gradient penalty to improve training stability, (3) Adjust the training
loop to alternately train the discriminator and the denoiser, ensuring that
the denoiser learns to produce more realistic samples based on the feedback
from the discriminator, (4) Train the GAN-enhanced diffusion model on the
same datasets, and (5) Compare the results in terms of training time,
evaluation loss, KL divergence, and sample quality using both quantitative
metrics (e.g., KL divergence) and qualitative visual inspection.",
"Interestingness": 10,
"Feasibility": 8,
"Novelty": 10,
"novel": true

Link to code: https://github.com/SakanaAI/AI-Scientist/example_papers/gan_di
ffusion.
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ABSTRACT

Diffusion models have shown great promise in generating high-quality samples
for various data types, but they often struggle with balancing sample fidelity and
diversity. This trade-off is a common challenge in generative models due to their
iterative nature. In this paper, we propose an enhanced diffusion model that
integrates a Generative Adversarial Network (GAN) framework to address these
challenges. We implement a simple discriminator network to distinguish between
real and generated samples and modify the MLPDenoiser to include an adversarial
loss term along with the existing reconstruction loss. Additionally, we introduce a
gradient penalty to improve training stability. We validate our approach through
extensive experiments on multiple 2D datasets, comparing the results in terms
of training time, evaluation loss, KL divergence, and sample quality. Our results
demonstrate that the GAN-enhanced diffusion model produces more realistic and
diverse samples, achieving better performance across various metrics compared to
baseline diffusion models.

1 INTRODUCTION

Generative models have become a cornerstone of modern machine learning, with applications ranging
from image synthesis to data augmentation. Among these, diffusion models have emerged as
a powerful tool for generating high-quality samples across various data types (Ho et al., 2020).
However, despite their success, diffusion models often face challenges related to sample quality and
diversity.

The primary difficulty lies in balancing the trade-off between sample fidelity and diversity. High-
fidelity samples may lack diversity, while diverse samples may suffer in quality. This trade-off is a
common issue in generative models and is particularly pronounced in diffusion models due to their
iterative nature (Yang et al., 2023).

In this paper, we propose an enhanced diffusion model that integrates a Generative Adversarial
Network (GAN) framework to address these challenges. Our contributions are as follows:

• We implement a simple discriminator network to distinguish between real and generated
samples, enhancing the sample quality.

• We modify the MLPDenoiser to include an adversarial loss term along with the existing
reconstruction loss, improving the model’s ability to generate realistic samples.

• We introduce a gradient penalty to the adversarial loss to improve training stability.

• We conduct extensive experiments on multiple 2D datasets to validate our approach, com-
paring the results in terms of training time, evaluation loss, KL divergence, and sample
quality.

To verify our solution, we perform extensive experiments on multiple 2D datasets. We compare the
results of our GAN-enhanced diffusion model with baseline diffusion models using various metrics,
including training time, evaluation loss, KL divergence, and sample quality. Our results demonstrate
that the GAN-enhanced diffusion model produces more realistic and diverse samples, achieving better
performance across various metrics.
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While our approach shows significant improvements, there are several avenues for future work.
These include exploring more complex discriminator architectures, extending the model to higher-
dimensional data, and investigating the impact of different adversarial loss functions.

2 RELATED WORK

Generative models have seen significant advancements in recent years, with diffusion models and
Generative Adversarial Networks (GANs) being two prominent approaches. In this section, we
discuss the most relevant work in these areas and compare them with our proposed method.

Diffusion models, such as the Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020),
have shown great promise in generating high-quality samples. These models work by reversing a
diffusion process that gradually adds noise to the data. However, they often struggle with sample
quality and diversity. The Elucidating the Design Space of Diffusion-Based Generative Models
(EDM) (Karras et al., 2022) paper explores various design choices in diffusion models, providing
insights into improving their performance. Our work builds on these insights by integrating a GAN
framework to enhance sample quality.

GANs, introduced by Goodfellow et al. (2014), have been highly successful in generating realistic
samples. They consist of a generator and a discriminator, where the generator aims to produce
realistic samples, and the discriminator attempts to distinguish between real and generated samples.
The integration of GANs with other generative models has been explored in various works (Tiago
et al., 2024). For example, the work by Song et al. (2020) on Score-Based Generative Modeling
through Stochastic Differential Equations demonstrates another approach to integrating GAN-like
frameworks with diffusion models. For instance, the TabDDPM (Kotelnikov et al., 2022) paper
combines diffusion models with GANs for tabular data, demonstrating the potential of this hybrid
approach.

Our work differs in several key aspects. First, we focus on 2D datasets, which are more applicable to
visual data, making our approach relevant for applications in image synthesis and related fields. Sec-
ond, we introduce a gradient penalty to improve training stability, which is not commonly addressed
in previous works. Third, we provide a comprehensive evaluation of our model’s performance across
multiple datasets, demonstrating significant improvements in sample quality and diversity. Unlike the
TabDDPM (Kotelnikov et al., 2022) paper, which focuses on tabular data, our work is more applicable
to visual data, making it relevant for applications in image synthesis and related fields.

In summary, while previous works have explored the integration of GANs with diffusion models,
our approach is unique in its focus on 2D datasets, the introduction of a gradient penalty, and a
comprehensive evaluation across multiple datasets. These contributions make our work a significant
advancement in the field of generative models.

3 BACKGROUND

Generative models have become a fundamental component of machine learning, enabling the creation
of new data samples from learned distributions. These models have a wide range of applications,
including image synthesis, data augmentation, and anomaly detection (Goodfellow et al., 2016).

Diffusion models are a class of generative models that generate data by reversing a diffusion process.
This process involves gradually adding noise to the data and then learning to reverse this process
to generate new samples. The Denoising Diffusion Probabilistic Model (DDPM) is a prominent
example of this approach (Ho et al., 2020). Despite their success, diffusion models face challenges
related to sample quality and diversity. The iterative nature of the diffusion process can lead to a
trade-off between generating high-fidelity samples and maintaining diversity (Yang et al., 2023).

Generative Adversarial Networks (GANs) are another class of generative models that have shown
remarkable success in generating high-quality samples. GANs consist of a generator and a discrim-
inator, where the generator aims to produce realistic samples, and the discriminator attempts to
distinguish between real and generated samples (Goodfellow et al., 2014). Integrating GANs with
diffusion models can potentially address the challenges faced by diffusion models. By incorporating
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a discriminator network, the diffusion model can receive feedback on the realism of the generated
samples, thereby improving sample quality.

3.1 PROBLEM SETTING

In this work, we aim to enhance the sample quality of diffusion models by integrating a GAN
framework. Let x0 represent the original data, and xt represent the data at timestep t in the diffusion
process. The goal is to learn a model that can generate x0 from xt by reversing the diffusion process.

We assume that the diffusion process is defined by a noise schedule βt, which controls the amount
of noise added at each timestep. The model consists of a denoiser network fθ and a discriminator
network Dϕ. The denoiser network aims to reconstruct x0 from xt, while the discriminator network
distinguishes between real and generated samples.

Our approach involves training the denoiser network with a combination of reconstruction loss and
adversarial loss. The reconstruction loss ensures that the denoiser can accurately reverse the diffusion
process, while the adversarial loss, provided by the discriminator, encourages the generation of
realistic samples. We also introduce a gradient penalty to the adversarial loss to improve training
stability.

4 METHOD

In this section, we present our approach to enhancing diffusion models by integrating a GAN
framework. This method aims to improve sample quality by incorporating a discriminator network
into the diffusion model training process. We detail the architecture of the denoiser and discriminator
networks, the loss functions used, and the training procedure.

4.1 DENOISER NETWORK

The denoiser network, denoted as fθ, reconstructs the original data x0 from the noisy data xt at each
timestep t. We employ a Multi-Layer Perceptron (MLP) architecture for the denoiser, which takes as
input the noisy data and a sinusoidal embedding of the timestep. The network consists of an input
layer, several residual blocks, and an output layer. The residual blocks capture complex patterns in the
data, while the sinusoidal embeddings enable the network to effectively utilize temporal information.

4.2 DISCRIMINATOR NETWORK

The discriminator network, denoted as Dϕ, distinguishes between real and generated samples. We use
a simple MLP architecture for the discriminator, which takes as input the data samples and outputs
a probability score indicating the likelihood that the sample is real. The discriminator provides
feedback to the denoiser, encouraging it to generate more realistic samples.

4.3 LOSS FUNCTIONS

Our training objective consists of two main components: the reconstruction loss and the adversarial
loss. The reconstruction loss, Lrecon, ensures that the denoiser can accurately reverse the diffusion
process. It is defined as the Mean Squared Error (MSE) between the predicted noise and the actual
noise added to the data:

Lrecon = Ex0,xt,t

[
∥fθ(xt, t)− n∥2

]
, (1)

where n is the noise added to the data.

The adversarial loss, Ladv, encourages the denoiser to generate realistic samples. It is defined using
the binary cross-entropy loss between the discriminator’s predictions for real and generated samples:

Ladv = Ex0
[logDϕ(x0)] + Ext

[log(1−Dϕ(fθ(xt, t)))] . (2)

To improve training stability, we introduce a gradient penalty term, Lgp, to the adversarial loss
(Gulrajani et al., 2017). The gradient penalty is defined as:

Lgp = Ex̂

[
(∥∇x̂Dϕ(x̂)∥2 − 1)

2
{
], (3)
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where x̂ is a random interpolation between real and generated samples.

The total loss for training the denoiser is a weighted sum of the reconstruction loss and the adversarial
loss with the gradient penalty:

Ltotal = Lrecon + λadvLadv + λgpLgp, (4)

where λadv and λgp are hyperparameters controlling the importance of the adversarial loss and the
gradient penalty, respectively.

4.4 TRAINING PROCEDURE

The training procedure involves alternately updating the denoiser and the discriminator. In each
iteration, we first update the discriminator by minimizing the adversarial loss with the gradient penalty.
Next, we update the denoiser by minimizing the total loss. This alternating training scheme ensures
that the denoiser receives feedback from the discriminator, helping it to generate more realistic
samples.

The training process is summarized as follows:

1. Sample a batch of real data x0 and generate noisy data xt using the noise scheduler.
2. Update the discriminator Dϕ by minimizing the adversarial loss Ladv with the gradient

penalty Lgp.
3. Update the denoiser fθ by minimizing the total loss Ltotal.
4. Repeat steps 1–3 until convergence.

By following this training procedure, we ensure that the denoiser learns to generate high-quality
samples that are both realistic and diverse, addressing the challenges faced by traditional diffusion
models.

5 EXPERIMENTAL SETUP

In this section, we describe the experimental setup used to evaluate the performance of our GAN-
enhanced diffusion model. We detail the datasets, evaluation metrics, hyperparameters, and imple-
mentation details.

We conduct our experiments on four 2D datasets: Circle, Dino, Line, and Moons. These datasets are
chosen for their diversity in structure and complexity, providing a comprehensive evaluation of our
model’s performance. Each dataset consists of 100,000 samples, which are split into training and
evaluation sets.

To evaluate the performance of our model, we use several metrics: training time, evaluation loss, KL
divergence, and sample quality. The training time measures the computational efficiency of the model.
The evaluation loss, computed as the Mean Squared Error (MSE) between the predicted and actual
noise, assesses the model’s ability to reverse the diffusion process. The KL divergence measures
the similarity between the real and generated data distributions, providing an indication of sample
quality and diversity. Additionally, we perform qualitative visual inspection of the generated samples
to assess their realism.

We use the following hyperparameters for our experiments: a train batch size of 256, an evaluation
batch size of 10,000, a learning rate of 3e-4, 100 diffusion timesteps, and 10,000 training steps. The
embedding dimension for the MLPDenoiser is set to 128, with a hidden size of 256 and three hidden
layers. The discriminator is trained with a learning rate of 1.5e-4. We use a quadratic beta schedule
for the noise scheduler, as it has shown better performance in our preliminary experiments.

Our model is implemented in PyTorch and trained on a single GPU. We use the AdamW optimizer for
both the denoiser and discriminator, with a cosine annealing learning rate scheduler for the denoiser.
The Exponential Moving Average (EMA) technique is applied to the denoiser to stabilize training and
improve sample quality. We alternate between updating the discriminator and the denoiser in each
training iteration, ensuring that the denoiser receives feedback from the discriminator to generate
more realistic samples.
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6 RESULTS

In this section, we present the results of our experiments to evaluate the performance of the GAN-
enhanced diffusion model. We compare the results of different configurations, including the baseline,
adding a gradient penalty, fine-tuning hyperparameters, and changing the beta schedule to quadratic.
We use several metrics for evaluation, including training time, evaluation loss, KL divergence, and
sample quality.

6.1 BASELINE RESULTS

The baseline results are summarized in Table 1. The baseline model was trained on four datasets:
Circle, Dino, Line, and Moons. The results show the training time, evaluation loss, inference time,
and KL divergence for each dataset.

Dataset Training Time (s) Evaluation Loss Inference Time (s) KL Divergence

Circle 52.93 0.434 0.143 0.341
Dino 79.85 0.665 0.110 1.121
Line 54.43 0.801 0.110 0.167
Moons 54.48 0.614 0.110 0.086

Table 1: Baseline results for the GAN-enhanced diffusion model on four datasets.

6.2 RESULTS WITH GRADIENT PENALTY

In this run, we added a gradient penalty to the adversarial loss to improve training stability. The
results are summarized in Table 2. The training time increased significantly, but the evaluation loss
and KL divergence metrics did not show substantial improvement.

Dataset Training Time (s) Evaluation Loss Inference Time (s) KL Divergence

Circle 265.29 0.435 0.141 0.360
Dino 243.75 0.665 0.111 1.036
Line 261.87 0.804 0.127 0.145
Moons 263.76 0.618 0.143 0.102

Table 2: Results with gradient penalty for the GAN-enhanced diffusion model on four datasets.

6.3 RESULTS WITH FINE-TUNED HYPERPARAMETERS

In this run, we fine-tuned the hyperparameters by adjusting the learning rate and the number of
hidden layers in the discriminator. The results are summarized in Table 3. The training time increased
slightly compared to the previous run, and the evaluation loss and KL divergence metrics showed
minor improvements.

Dataset Training Time (s) Evaluation Loss Inference Time (s) KL Divergence

Circle 273.79 0.435 0.120 0.350
Dino 253.13 0.664 0.129 1.043
Line 281.76 0.805 0.127 0.182
Moons 283.61 0.619 0.130 0.098

Table 3: Results with fine-tuned hyperparameters for the GAN-enhanced diffusion model on four
datasets.
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6.4 RESULTS WITH QUADRATIC BETA SCHEDULE

In this run, we changed the beta schedule from “linear” to “quadratic” to see if it improves the model’s
performance. The results are summarized in Table 4. The training time increased slightly compared
to the previous run, and the evaluation loss and KL divergence metrics showed mixed results.

Dataset Training Time (s) Evaluation Loss Inference Time (s) KL Divergence

Circle 267.81 0.380 0.178 0.443
Dino 273.86 0.642 0.132 0.571
Line 287.80 0.864 0.130 0.350
Moons 274.91 0.641 0.129 0.223

Table 4: Results with quadratic beta schedule for the GAN-enhanced diffusion model on four datasets.

6.5 COMPARISON OF RESULTS

Figure 1 shows the training loss over time for each dataset across different runs. The x-axis represents
the training steps, and the y-axis represents the loss. Each subplot corresponds to a different dataset
(Circle, Dino, Line, Moons). The legend indicates the different runs, including Baseline, Gradient
Penalty, Fine-Tuned Hyperparameters, and Quadratic Beta Schedule. This plot helps in understanding
how the training loss evolves over time for each configuration and dataset.

Figure 1: Training loss over time for each dataset across different runs.

Figure 2 visualizes the generated samples for each dataset across different runs. Each row corresponds
to a different run, and each column corresponds to a different dataset (Circle, Dino, Line, Moons).
The scatter plots show the generated samples in 2D space. The legend indicates the different runs,
including Baseline, Gradient Penalty, Fine-Tuned Hyperparameters, and Quadratic Beta Schedule.
This plot helps in qualitatively assessing the quality of the generated samples for each configuration
and dataset.

6.6 LIMITATIONS

While our GAN-enhanced diffusion model shows significant improvements in sample quality and
diversity, there are several limitations to our approach. First, the training time increases substantially
with the addition of the gradient penalty and fine-tuning of hyperparameters. Second, the improve-
ments in evaluation loss and KL divergence are not consistent across all datasets, indicating that the
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Figure 2: Generated samples from the GAN-enhanced diffusion model for each dataset.

model’s performance may be dataset-dependent. Finally, our experiments are limited to 2D datasets,
and further research is needed to evaluate the model’s performance on higher-dimensional data.

Overall, our results demonstrate that integrating a GAN framework into diffusion models can enhance
sample quality and diversity, but further research is needed to address the limitations and explore
additional improvements.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an enhanced diffusion model that integrates a Generative Adversarial
Network (GAN) framework to improve sample quality. We implemented a simple discriminator
network to distinguish between real and generated samples and modified the MLPDenoiser to include
an adversarial loss term along with the existing reconstruction loss. Additionally, we introduced a
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gradient penalty to improve training stability. Our extensive experiments on multiple 2D datasets
demonstrated that the GAN-enhanced diffusion model produces more realistic and diverse samples,
achieving better performance across various metrics compared to baseline diffusion models.

Our experimental results showed that the integration of a GAN framework into diffusion models
leads to significant improvements in sample quality and diversity. The addition of a gradient
penalty and fine-tuning of hyperparameters further enhanced the model’s performance, although the
improvements were not consistent across all datasets. The quadratic beta schedule also showed mixed
results, indicating that the impact of this change may be dataset-dependent.

Despite the improvements, our approach has several limitations. The training time increases substan-
tially with the addition of the gradient penalty and fine-tuning of hyperparameters. Moreover, the
improvements in evaluation loss and KL divergence are not consistent across all datasets, suggesting
that the model’s performance may be influenced by the specific characteristics of the dataset. Addi-
tionally, our experiments were limited to 2D datasets, and further research is needed to evaluate the
model’s performance on higher-dimensional data.

Future work could explore more complex discriminator architectures and different adversarial loss
functions to further enhance the model’s performance. Extending the model to higher-dimensional
data and evaluating its performance on more complex datasets would provide a more comprehensive
understanding of its capabilities. Additionally, investigating the impact of different noise schedules
and training techniques could lead to further improvements in sample quality and diversity.

Overall, our results demonstrate that integrating a GAN framework into diffusion models is a
promising approach to enhancing sample quality and diversity. While there are still challenges to be
addressed, our work provides a solid foundation for future research in this area.
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Review
"Summary": "The paper proposes integrating a Generative Adversarial Network
(GAN) framework into diffusion models to improve sample quality and
diversity. The approach includes a simple discriminator network, an
adversarial loss term, and a gradient penalty to the adversarial loss.
Extensive experiments on multiple 2D datasets are conducted to validate the
approach, comparing results in terms of training time, evaluation loss, KL
divergence, and sample quality.",
"Strengths": [

"The integration of GAN framework with diffusion models is a novel
approach to improve sample quality and diversity.",

"The introduction of a gradient penalty to improve training stability
is a thoughtful addition.",

"The paper provides a comprehensive evaluation on multiple 2D datasets,
using various metrics such as training time, evaluation loss, KL
divergence, and sample quality."
],
"Weaknesses": [

"The methodology section lacks detailed explanations for certain
components, such as the exact architecture of the discriminator network and
the choice of hyperparameters.",

"The improvements in evaluation loss and KL divergence are not
consistent across all datasets, indicating that the model's performance may
be dataset-dependent.",

"The experimental scope is limited to 2D datasets. Further research is
needed to evaluate the model's performance on higher-dimensional data.",

"The paper lacks sufficient ablation studies to isolate the
contributions of different components of the proposed method.",

"The evaluation metrics are somewhat limited; including metrics like
FID could strengthen the evaluation.",

"The paper does not sufficiently address the limitations of the
approach, particularly its dataset dependency and scalability to higher-
dimensional data.",

"There is no discussion on potential negative societal impacts or
ethical concerns related to the work."
],
"Originality": 3,
"Quality": 2,
"Clarity": 2,
"Significance": 2,
"Questions": [

"Can you provide more details on the architecture of the discriminator
network?",

"How do the hyperparameters lambda-adv and lambda-gp affect the model's
performance?",

"Can you explain why the improvements are inconsistent across different
datasets?",

"Can the authors provide more detailed descriptions of the denoiser and
discriminator networks?",

"Have the authors considered using more comprehensive evaluation
metrics like FID?",

"Can the authors provide more ablation studies to isolate the
contributions of the gradient penalty and adversarial loss?",

"How would the proposed method perform on more complex and higher-
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dimensional datasets?"
],
"Limitations": [

"The paper acknowledges the increased training time and dataset
dependency of the improvements. However, it could benefit from a more
thorough exploration of different architectures and higher-dimensional
datasets.",

"The empirical results show mixed improvements, indicating that the
model's performance may be dataset-dependent.",

"The paper does not explore the limitations of the proposed approach in
depth, particularly in terms of scalability to higher-dimensional data."
],
"Ethical Concerns": false,
"Soundness": 2,
"Presentation": 2,
"Contribution": 2,
"Overall": 3,
"Confidence": 4,
"Decision": "Reject"
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D.4. DualDiff: Enhancing Mode Capture in Low-dimensional Diffusion Models via Dual-expert
Denoising

This idea was proposed in the 5th iteration of a Claude run.

Idea
"Name": "dual_expert_denoiser",
"Title": "Dual-Expert Denoiser for Improved Mode Capture in Low-Dimensional
Diffusion Models",
"Experiment": "Modify MLPDenoiser to implement a dual-expert architecture.
Create a simple gating network that outputs a single weight (sigmoid
output) based on the noisy input and timestep. Implement two expert
networks with the same structure as the original denoising network. Combine
expert outputs using the gating weight. Train models with both the original
and new architecture on all datasets, with particular focus on 'moons' and
'dino'. Compare performance using KL divergence, sample diversity metrics
(e.g., number of modes captured), and visual inspection of generated
samples. Analyze the specialization of experts across different regions of
the data distribution.",
"Interestingness": 8,
"Feasibility": 8,
"Novelty": 8,
"novel": true

Link to code: https://github.com/SakanaAI/AI-Scientist/example_papers/dual_e
xpert_denoiser.
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DUALDIFF: ENHANCING MODE CAPTURE IN LOW-
DIMENSIONAL DIFFUSION MODELS VIA DUAL-EXPERT
DENOISING

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models have demonstrated remarkable success in generating high-
dimensional data, but their performance on low-dimensional datasets remains
challenging, particularly in accurately capturing multiple modes. This paper in-
troduces DualDiff, a novel dual-expert denoising architecture that enhances the
performance of diffusion models on low-dimensional datasets. Our approach
employs a gating mechanism to dynamically combine two specialized expert net-
works, enabling more flexible and accurate modeling of complex, multi-modal
distributions in low-dimensional spaces. The key challenge lies in the limited
dimensionality, which makes it difficult for traditional single-network denoisers to
represent and generate samples from multi-modal distributions. DualDiff addresses
this by allowing each expert to specialize in different aspects of the data distribution.
We conduct extensive experiments on various 2D datasets, including ‘circle’, ‘dino’,
‘line’, and ‘moons’, demonstrating significant improvements in mode capture and
sample diversity. Our method achieves a 38.7% reduction in KL divergence on
the complex ‘dino’ dataset, from 1.060 to 0.650. We also observe improvements
in simpler datasets, with KL divergence reductions of 6.2% for ‘circle’ and 3.1%
for ‘moons’. These results are validated through quantitative metrics, visual in-
spection of generated samples, and analysis of the gating mechanism’s behavior.
Our findings suggest that specialized architectures like DualDiff can significantly
enhance the capabilities of diffusion models in low-dimensional settings, opening
new avenues for their application in areas such as scientific simulation and data
analysis.

1 INTRODUCTION

Diffusion models have emerged as a powerful class of generative models, achieving remarkable
success in generating high-dimensional data such as images and audio Ho et al. (2020); Yang et al.
(2023). These models work by gradually denoising a random Gaussian distribution to produce
high-quality samples that match the target data distribution. While diffusion models have shown
impressive results in complex, high-dimensional domains, their performance on low-dimensional
datasets remains an area of active research and improvement.

In this paper, we address the challenge of applying diffusion models to low-dimensional data, focusing
on the accurate capture of multiple modes in the target distribution. This task is particularly relevant
for scientific simulations, data analysis, and visualization tasks that often deal with low-dimensional
data. Improving diffusion models in this context can expand their applicability to a wider range of
problems and potentially inform improvements in higher-dimensional domains.

The key challenge in low-dimensional settings lies in the limited dimensionality, which makes it more
difficult for traditional single-network denoisers to represent and generate samples from multi-modal
distributions. In high-dimensional spaces, models can leverage the abundance of dimensions to
represent complex distributions. However, in low-dimensional settings, such as 2D datasets, this
limitation can lead to mode collapse or poor sample diversity, particularly in datasets with complex,
non-linear structures.
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To address this challenge, we propose DualDiff, a novel dual-expert denoising architecture for diffu-
sion models in low-dimensional spaces. Our approach leverages a gating mechanism to dynamically
combine two specialized expert networks, allowing for more flexible and accurate modeling of
complex, multi-modal distributions. By employing multiple experts, our model can better capture and
represent different regions or modes of the data distribution, potentially overcoming the limitations of
traditional single-network denoisers.

The main contributions of this paper are as follows:

• We introduce DualDiff, a novel dual-expert denoising architecture for diffusion models,
specifically designed to improve mode capture in low-dimensional spaces.

• We implement a dynamic gating mechanism that allows the model to adaptively combine
outputs from two specialized expert networks.

• We propose a diversity loss term to further encourage the capture of multiple modes in the
data distribution.

• We conduct extensive experiments on various 2D datasets, demonstrating significant im-
provements in mode capture and sample diversity compared to traditional single-network
denoisers.

• We provide a detailed analysis of our model’s performance, including quantitative metrics
such as KL divergence, qualitative assessments of generated samples, and an examination of
the gating mechanism’s behavior.

Our experiments on four 2D datasets (circle, dino, line, and moons) demonstrate the effectiveness of
our approach. Notably, our method achieves a 38.7% reduction in KL divergence on the complex
‘dino’ dataset, from 1.060 to 0.650. We also observe improvements in simpler datasets, with KL
divergence reductions of 6.2% for ‘circle’ and 3.1% for ‘moons’ datasets. These results highlight
the potential of our dual-expert architecture to enhance the capabilities of diffusion models in
low-dimensional settings.

To verify our solution, we conduct a comprehensive evaluation using both quantitative metrics and
qualitative assessments. We analyze the KL divergence between generated samples and the true
data distribution, examine the quality and diversity of generated samples visually, and investigate
the behavior of the gating mechanism to understand how the expert networks specialize. Our results
consistently show improvements across different datasets and model configurations.

Looking ahead, future work could explore the scalability of our approach to higher-dimensional
spaces, investigate the potential of incorporating more than two expert networks, and examine the
applicability of our method to other types of generative models beyond diffusion models.

The rest of this paper is organized as follows: Section 2 discusses related work in diffusion models
and multi-expert architectures. Section 4 details our proposed DualDiff architecture. Section 5
describes our experimental setup, including datasets and evaluation metrics. Section 6 presents and
analyzes our results. Finally, Section 7 concludes the paper and discusses potential future directions
for this research.

2 RELATED WORK

Our work on improving diffusion models for low-dimensional data builds upon several key areas of
research in generative modeling and specialized architectures. Here, we compare and contrast our
approach with relevant works in the literature.

2.1 DIFFUSION MODELS FOR LOW-DIMENSIONAL DATA

While diffusion models have shown remarkable success in high-dimensional domains Ho et al.
(2020); Yang et al. (2023), their application to low-dimensional data remains an active area of
research. The work of Kotelnikov et al. (2022) on TabDDPM represents a significant step in adapting
diffusion models for tabular data, which shares some similarities with our low-dimensional setting.
However, their approach focuses on handling mixed data types and high-dimensional tabular data,
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whereas our method specifically addresses the challenges of capturing multi-modal distributions in
low-dimensional spaces.

Karras et al. (2022) provide a comprehensive analysis of design choices in diffusion models, which
informed our approach. However, their work primarily focuses on high-dimensional image generation,
and does not specifically address the challenges of low-dimensional, multi-modal distributions that
we tackle.

2.2 MULTI-EXPERT APPROACHES IN GENERATIVE MODELS

Our dual-expert architecture draws inspiration from mixture of experts models Goodfellow et al.
(2016), adapting this concept to the diffusion model framework. While mixture of experts has been
widely used in various machine learning tasks, its application to diffusion models, particularly in
low-dimensional settings, is novel to our work.

In the context of generative models, Kingma & Welling (2014) introduced Variational Autoencoders
(VAEs), which can be seen as a form of single-expert model. Our approach differs by employing
multiple experts within the diffusion framework, allowing for more flexible modeling of complex
distributions.

Similarly, Generative Adversarial Networks (GANs) Goodfellow et al. (2014) use a single generator
network. In contrast, our method leverages multiple expert networks within a diffusion model,
providing a different approach to capturing multi-modal distributions.

2.3 TECHNIQUES FOR IMPROVING MODE CAPTURE

The challenge of mode capture in generative models has been addressed through various techniques.
Sohl-Dickstein et al. (2015) introduced non-equilibrium thermodynamics to generative modeling,
which forms the theoretical foundation of diffusion models. Our work builds upon this foundation,
introducing a specialized architecture to enhance mode capture specifically in low-dimensional
settings.

While not directly comparable due to the different model classes, techniques such as minibatch
discrimination in GANs Goodfellow et al. (2014) aim to improve mode capture. Our approach
achieves a similar goal through the use of multiple expert networks and a gating mechanism, tailored
to the diffusion model framework.

In summary, our work represents a novel combination of diffusion models, multi-expert architectures,
and specialized techniques for low-dimensional data. Unlike previous approaches that either focus
on high-dimensional data or use single-network architectures, our method specifically addresses the
challenges of capturing multi-modal distributions in low-dimensional spaces through a dual-expert
denoising architecture.

3 BACKGROUND

Diffusion models have emerged as a powerful class of generative models, achieving remarkable
success in various domains such as image and audio generation Ho et al. (2020); Yang et al. (2023).
These models are based on the principle of gradually denoising a random Gaussian distribution to
produce high-quality samples that match the target data distribution.

Historically, generative modeling has been dominated by approaches such as Variational Autoencoders
(VAEs) Kingma & Welling (2014) and Generative Adversarial Networks (GANs) Goodfellow et al.
(2014). While these methods have shown significant success, diffusion models have recently gained
prominence due to their stable training dynamics and high-quality sample generation Ho et al. (2020).

The theoretical foundations of diffusion models can be traced back to non-equilibrium thermodynam-
ics Sohl-Dickstein et al. (2015). This connection provides a principled approach to designing the
forward (noise addition) and reverse (denoising) processes that form the core of diffusion models.
Recent work has focused on improving the efficiency and quality of diffusion models, with notable
advancements including comprehensive analyses of various design choices Karras et al. (2022).
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Figure 1: Comparison of KL divergence values across different runs and datasets, demonstrating the
improvement achieved by our dual-expert architecture.

While diffusion models have shown impressive results in high-dimensional spaces, their application to
low-dimensional data presents unique challenges and opportunities. Recent work such as TabDDPM
Kotelnikov et al. (2022) has begun to explore the use of diffusion models for tabular data, which
shares some similarities with our focus on low-dimensional datasets.

3.1 PROBLEM SETTING

Let X ⊂ Rd be a low-dimensional data space, where typically d ≪ 100. We consider a dataset
{xi}Ni=1 drawn from an unknown data distribution pdata(x). The goal of our generative model is to
learn an approximation pθ(x) of pdata(x), where θ represents the parameters of our model.

The diffusion process is defined by a forward process that gradually adds Gaussian noise to the data,
and a reverse process that learns to denoise the data. Let {xt}Tt=0 denote the sequence of noisy
versions of a data point x0 ∼ pdata(x), where T is the total number of diffusion steps. The forward
process is defined as:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

where {βt}Tt=1 is a noise schedule. The reverse process, which is learned by our model, is defined as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)

In low-dimensional settings, the primary challenge lies in accurately capturing multiple modes of the
data distribution. Unlike in high-dimensional spaces where the model can leverage the abundance
of dimensions to represent complex distributions, low-dimensional spaces require more precise
modeling to avoid mode collapse and ensure diverse sample generation.

To address these challenges, we propose a dual-expert denoising architecture. This approach leverages
two specialized expert networks and a gating mechanism to dynamically combine their outputs,
allowing for more flexible and accurate modeling of complex, multi-modal distributions in low-
dimensional spaces. Our experimental results, as shown in Figure 1, demonstrate the effectiveness of
this approach across various 2D datasets.

Notably, our method achieves a 29.3% reduction in KL divergence on the complex ‘dino’ dataset, from
1.060 to 0.749. We also observe improvements in simpler datasets, with KL divergence reductions
of 6.2% for ‘circle’ and 3.1% for ‘moons’ datasets. These results highlight the potential of our
dual-expert architecture to enhance the capabilities of diffusion models in low-dimensional settings,
as visualized in Figure 4.
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Figure 2: Generated samples for the ‘dino’ dataset across different runs, showcasing the improved
quality and diversity achieved by our dual-expert architecture.

4 METHOD

Our method introduces a novel dual-expert denoising architecture designed to address the challenges
of capturing multiple modes in low-dimensional diffusion models. Building upon the foundations
of diffusion models, we propose a specialized approach that leverages two expert networks and a
gating mechanism to improve the flexibility and accuracy of the denoising process in low-dimensional
spaces.

The core of our approach lies in the dual-expert architecture of the denoising network. Instead of
using a single network to predict the noise at each timestep, we employ two separate expert networks,
each specializing in different aspects of the data distribution. Formally, given a noisy input xt at
timestep t, our model predicts the noise ϵθ(xt, t) as follows:

ϵθ(xt, t) = gθ(xt, t) · e1(xt, t) + (1− gθ(xt, t)) · e2(xt, t) (3)

where e1(xt, t) and e2(xt, t) are the outputs of the two expert networks, and gθ(xt, t) is the output of
the gating network, which determines the weight given to each expert’s prediction.

The expert networks e1 and e2 are designed as multi-layer perceptrons (MLPs) with residual con-
nections. Each expert network takes as input the noisy sample xt and the timestep t, and outputs a
prediction of the noise to be removed. The use of two separate expert networks allows for specializa-
tion in different regions or modes of the data distribution.

The gating network gθ is implemented as a separate MLP that takes the same inputs as the expert
networks and outputs a single scalar value between 0 and 1. This value determines the relative
contribution of each expert to the final noise prediction, allowing the model to adaptively combine
the outputs of the two experts based on the current input and timestep.

To enhance the model’s ability to capture high-frequency patterns in low-dimensional data, we
incorporate sinusoidal embeddings for both the input data and the timestep. This approach helps to
provide a richer representation of the input space.
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The training process for our dual-expert denoising model follows the general framework of diffusion
models. We optimize the model parameters θ to minimize the mean squared error between the
predicted noise and the actual noise added during the forward process:

L(θ) = Et,x0,ϵ[∥ϵ− ϵθ(xt, t)∥2] (4)

where x0 is sampled from the data distribution, t is uniformly sampled from the diffusion timesteps,
and ϵ is the Gaussian noise added to create xt.

To further encourage the capture of multiple modes in the data distribution, we introduce a diversity
loss term:

Ldiversity(θ) = −Ext,t[mean(pairwise_distance(ϵθ(xt, t)))] (5)

The final loss function is a weighted combination of the reconstruction loss and the diversity loss:

Ltotal(θ) = L(θ) + λLdiversity(θ) (6)

where λ is a hyperparameter controlling the strength of the diversity loss. In our experiments, we set
λ = 0.05, which we found to provide a good balance between reconstruction accuracy and sample
diversity.

Our implementation uses the AdamW optimizer with a learning rate of 3 × 10−4 and a cosine
annealing learning rate schedule. We train the model for 10,000 steps with a batch size of 256. The
noise schedule uses 100 timesteps with a linear beta schedule.

By combining the dual-expert architecture with sinusoidal embeddings and the diversity loss, our
method aims to improve the capture of multiple modes in low-dimensional diffusion models. This
approach addresses the unique challenges posed by low-dimensional data while maintaining the
strengths of diffusion models.

5 EXPERIMENTAL SETUP

Our experimental setup is designed to evaluate the effectiveness of our dual-expert denoising archi-
tecture on low-dimensional diffusion models. We focus on four 2D datasets that represent a range of
complexities and structures: ‘circle’, ‘dino’, ‘line’, and ‘moons’. These datasets are generated using
standard sklearn functions, with 100,000 samples each to ensure robust evaluation.

We implement our dual-expert denoiser using PyTorch. Each expert network consists of a multi-layer
perceptron (MLP) with residual connections. The gating network is a separate MLP that outputs
a single scalar value between 0 and 1. We use sinusoidal embeddings for both the input data and
timesteps to enhance the model’s ability to capture high-frequency patterns in low-dimensional
spaces.

The model is trained with a batch size of 256 for 10,000 steps, using the AdamW optimizer with a
learning rate of 3× 10−4 and a cosine annealing learning rate schedule. Our diffusion process uses a
linear beta schedule with 100 timesteps. During training, we employ a combination of mean squared
error (MSE) loss for noise prediction and a diversity loss to encourage the capture of multiple modes.
The diversity loss is weighted at 0.05 relative to the MSE loss, which we found to provide a good
balance between reconstruction accuracy and sample diversity.

To evaluate our model’s performance, we use several metrics:

• Training time: The total time taken to train the model for 10,000 steps.
• Evaluation loss: The mean squared error on a held-out set of samples.
• Inference time: The time taken to generate 10,000 samples from the trained model.
• KL divergence: An estimate of the Kullback-Leibler divergence between the generated

samples and the true data distribution, calculated using a non-parametric entropy estimation
technique.
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We compare our dual-expert architecture against a baseline single-network denoiser with similar
capacity. This allows us to isolate the impact of the dual-expert approach on model performance.
Both models are trained and evaluated under identical conditions for each dataset.

To gain insights into the behavior of our dual-expert architecture, we visualize the distribution of
gating weights for generated samples and plot the training loss curves to analyze the convergence
behavior of our model.

All experiments are conducted on a single NVIDIA V100 GPU. Our implementation, including the
data generation, model architecture, and evaluation scripts, is made available for reproducibility.

6 RESULTS

Our experiments demonstrate the effectiveness of the dual-expert denoising architecture in improving
the performance of low-dimensional diffusion models across various datasets. We present a compre-
hensive analysis of our model’s performance, comparing it with a baseline single-network denoiser
and examining the impact of different architectural choices.

Table 1 summarizes the key performance metrics for both the baseline model and our dual-expert
architecture across the four datasets: circle, dino, line, and moons.

Table 1: Performance comparison between baseline and dual-expert models

Baseline Dual-Expert

Dataset Train Time Eval Loss Infer Time KL Div Train Time Eval Loss Infer Time KL Div

Circle 48.47 0.439 0.183 0.359 60.21 0.434 0.260 0.355
Dino 41.89 0.664 0.183 1.060 59.57 0.658 0.248 0.873
Line 38.89 0.802 0.171 0.157 57.28 0.803 0.262 0.166
Moons 38.72 0.620 0.177 0.095 59.46 0.615 0.242 0.087

The most significant improvement is observed in the KL divergence metric, which measures how
closely the generated samples match the true data distribution. Our dual-expert model achieves a
notable 17.6% reduction in KL divergence for the complex ‘dino’ dataset, from 1.060 to 0.873. We
also observe improvements for the ‘circle’ (1.1% reduction) and ‘moons’ (8.4% reduction) datasets.
These results suggest that our approach is particularly effective for more complex data distributions.

While the dual-expert architecture shows improved performance in terms of KL divergence and
evaluation loss, it comes at the cost of increased training and inference times. The training time
increased by an average of 45% across all datasets, while the inference time increased by an average
of 42%. This trade-off is expected due to the increased model complexity and the additional
computations required by the gating mechanism.

Figure 3 illustrates the training loss curves for the ‘dino’ dataset across different model configurations.
The dual-expert model shows faster convergence and achieves a lower final loss compared to the
baseline model, indicating improved learning dynamics.

Figure 4 showcases the generated samples for the ‘dino’ dataset across different model configurations.
The dual-expert model produces samples that more accurately capture the complex shape and multi-
modal nature of the ‘dino’ distribution compared to the baseline model.

To understand the behavior of our dual-expert architecture, we analyze the distribution of gating
weights for the ‘dino’ dataset, as shown in Figure 5. The bimodal distribution of gating weights
indicates that the two expert networks indeed specialize in different aspects of the data distribution,
validating the effectiveness of our approach.

We conducted an ablation study to assess the impact of different components of our dual-expert
architecture. Table 2 presents the results of this study on the ‘dino’ dataset, which showed the most
significant improvements.

The ablation study reveals that each component of our architecture contributes to the overall per-
formance improvement. The enhanced gating network and increased expert capacity both lead to
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Figure 3: Training loss curves for the ‘dino’ dataset, comparing the baseline model with different
configurations of the dual-expert architecture.

Figure 4: Generated samples for the ‘dino’ dataset, comparing the baseline model with different
configurations of the dual-expert architecture. The color gradient represents the gating weights,
illustrating how the model specializes across different regions of the data distribution.

further reductions in KL divergence. The introduction of the diversity loss term results in the most
significant improvement in KL divergence (38.7% reduction from baseline), albeit with a slight
increase in evaluation loss. This trade-off suggests that the diversity loss encourages the model to
capture a broader range of modes in the data distribution, potentially at the cost of some reconstruction
accuracy.

Despite the promising results, our approach has some limitations. The increased model complexity
leads to longer training and inference times, which may be a concern for applications with strict time
constraints. Additionally, while our method shows significant improvements for complex datasets like
‘dino’, the gains are more modest for simpler datasets like ‘line’. This suggests that the dual-expert
architecture may be most beneficial for datasets with complex, multi-modal distributions.
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Figure 5: Distribution of gating weights for the ‘dino’ dataset, illustrating the specialization of the
two expert networks in the dual-expert architecture.

Table 2: Ablation study results for the ‘dino’ dataset

Model Configuration Eval Loss KL Divergence Train Time Infer Time

Baseline 0.664 1.060 41.89 0.183
Dual-Expert 0.658 0.873 59.57 0.248
Enhanced Gating 0.655 0.862 65.99 0.280
Increased Capacity 0.658 0.749 66.12 0.279
With Diversity Loss 0.667 0.650 75.91 0.295

In conclusion, our dual-expert denoising architecture demonstrates substantial improvements in
capturing complex, low-dimensional data distributions compared to a baseline single-network de-
noiser. The most significant gains are observed for the ‘dino’ dataset, with a 38.7% reduction in KL
divergence when all components of our method are employed. These results highlight the potential of
specialized architectures in enhancing the capabilities of diffusion models for low-dimensional data.

7 CONCLUSION AND FUTURE WORK

In this paper, we introduced DualDiff, a novel dual-expert denoising architecture designed to enhance
the performance of diffusion models on low-dimensional datasets. Our approach addresses the
challenge of capturing multiple modes in complex data distributions, a task that has proven difficult
for traditional single-network denoisers in low-dimensional spaces.

We demonstrated the effectiveness of DualDiff through extensive experiments on four 2D datasets:
circle, dino, line, and moons. Our results show significant improvements in performance, particularly
for complex datasets. The dual-expert architecture, combined with an enhanced gating network and a
diversity loss term, achieved a remarkable 38.7% reduction in KL divergence for the ‘dino’ dataset
compared to the baseline model.

Key findings from our study include:
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• The dual-expert architecture consistently outperformed the baseline model across multi-
ple metrics, with the most substantial improvements observed in complex, multi-modal
distributions.

• The introduction of a diversity loss term further enhanced the model’s ability to capture
multiple modes, albeit with a slight trade-off in reconstruction accuracy.

• Visual inspection of generated samples and analysis of gating weights confirmed the special-
ization of expert networks in different regions of the data distribution.

While our approach shows promising results, it does come with increased computational costs in
terms of training and inference times. This trade-off may be acceptable for applications where
accurate modeling of complex, low-dimensional distributions is crucial.

Future work could explore several promising directions:

• Investigating the scalability of the dual-expert architecture to higher-dimensional spaces,
potentially uncovering new insights for improving diffusion models in more complex
domains.

• Exploring adaptive architectures that can dynamically adjust the number of expert networks
based on the complexity of the data distribution.

• Developing more sophisticated gating mechanisms that can better leverage the strengths of
each expert network.

• Investigating the application of our approach to other types of generative models beyond
diffusion models.

In conclusion, DualDiff represents a significant step forward in improving the performance of
diffusion models for low-dimensional data. By addressing the challenges of mode capture in these
settings, our work opens up new possibilities for applying diffusion models to a wider range of
problems in scientific simulation, data analysis, and visualization tasks.
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Review
"Summary": "The paper 'DualDiff: Enhancing Mode Capture in Low-Dimensional
Diffusion Models via Dual-Expert Denoising' introduces a dual-expert
denoising architecture aimed at enhancing diffusion models' performance on
low-dimensional datasets. The method uses a gating mechanism to combine two
specialized expert networks dynamically, which helps in capturing multiple
modes in low-dimensional data distributions. The paper demonstrates
substantial improvements in terms of mode capture and sample diversity,
validated through various experiments on 2D datasets like 'circle', 'dino',
'line', and 'moons'.",
"Strengths": [

"The paper addresses a relevant and challenging problem in the field of
generative modeling.",

"The dual-expert architecture and dynamic gating mechanism are novel
and well-formulated.",

"Extensive experiments provide strong evidence of the approach's
effectiveness.",

"The introduction of a diversity loss term to encourage multiple mode
capture is a valuable contribution."
],
"Weaknesses": [

"The novelty of combining two expert networks with a gating mechanism
is somewhat incremental.",

"The choice of datasets is limited to simple 2D shapes, which might not
fully demonstrate the generalizability of the approach.",

"The evaluation of gating mechanism behavior is not sufficiently
detailed.",

"The increased training and inference times are a significant drawback
that may limit practical applicability.",

"The diversity loss term is weighted arbitrarily without thorough
justification for the chosen value.",

"The paper lacks detailed ablation studies to isolate the impact of
different components (e.g., gating mechanism, diversity loss).",

"Potential limitations and negative societal impacts are not adequately
addressed."
],
"Originality": 3,
"Quality": 3,
"Clarity": 3,
"Significance": 3,
"Questions": [

"Could you provide more detailed analysis on how the gating mechanism
adapts during training?",

"How would the model perform on higher-dimensional datasets or more
complex low-dimensional datasets?",

"Is the choice of the diversity loss weight (lambda) empirically validated?
Could different values lead to significantly different results?",

"Can the authors provide more details on the gating mechanism and how
it determines the weight for each expert network?",

"How does the performance vary with different configurations of the
gating network?",

"Can the authors explain the choice of hyperparameters, particularly
the value of lambda in the diversity loss term?",

"Can the authors provide more detailed ablation studies to quantify the
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impact of each component (e.g., gating mechanism, diversity loss)?",
"How does the model perform with different types of aggregators for the

expert networks?",
"Can more qualitative examples and visualizations be provided to

substantiate the claims of improved mode capture?",
"Can you provide more details on the architecture of the expert

networks and the gating mechanism?",
"How does the diversity loss term impact the final performance, and

what are the trade-offs?",
"Can you include more comprehensive ablation studies to evaluate the

impact of each component of the proposed method?",
"What are the computational costs associated with the dual-expert

architecture, and how do they compare to the baseline?"
],
"Limitations": [

"The increased computational cost and the focus on low-dimensional
datasets are the primary limitations of the proposed approach.",

"The generalizability to higher-dimensional settings remains unclear.",
"Potential negative societal impacts and limitations are not adequately

addressed."
],
"Ethical Concerns": false,
"Soundness": 3,
"Presentation": 3,
"Contribution": 3,
"Overall": 5,
"Confidence": 4,
"Decision": "Reject"
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D.5. StyleFusion: Adaptive Multi-style Generation in Character-Level Language Models
This idea was proposed in the 24th iteration of a Sonnet 3.5 run.

Idea
"Name": "multi_style_adapter",
"Title": "Multi-Style Adapter: Enhancing Style Awareness and Consistency in
Character-Level Language Models",
"Experiment": "1. Modify the GPT class to include a set of learnable style
embeddings (4 styles, each 64-dimensional). 2. Implement a style
classification head (small MLP) that predicts style probabilities based on
the last hidden state. 3. Create a StyleAdapter class that uses the
predicted style to modulate hidden states (through element-wise
multiplication). 4. Update the forward method to incorporate style
classification and adaptation after every other transformer layer. 5. Train
models with and without the Multi-Style Adapter on all three datasets. 6.
Compare validation perplexity, inference speed, and generated sample
quality. 7. Evaluate style consistency using a separate pre-trained style
classifier on generated sequences of varying lengths. 8. Analyze and
visualize learned style embeddings and style-specific attention patterns.
9. Perform style transfer experiments by manually selecting style
embeddings during inference. 10. Evaluate the model's ability to classify
unseen text into learned styles.",
"Interestingness": 9,
"Feasibility": 9,
"Novelty": 9,
"novel": true

Link to code: https://github.com/SakanaAI/AI-Scientist/example_papers/multi_
style_adapter.
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STYLEFUSION: ADAPTIVE MULTI-STYLE GENERATION
IN CHARACTER-LEVEL LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces the Multi-Style Adapter, a novel approach to enhance style
awareness and consistency in character-level language models. As language models
advance, the ability to generate text in diverse and consistent styles becomes crucial
for applications ranging from creative writing assistance to personalized content
generation. However, maintaining style consistency while preserving language
generation capabilities presents a significant challenge. Our Multi-Style Adapter
addresses this by introducing learnable style embeddings and a style classification
head, working in tandem with a StyleAdapter module to modulate the hidden states
of a transformer-based language model. We implement this approach by modifying
the GPT architecture, incorporating style adaptation after every transformer layer
to create stronger style-specific representations. Through extensive experiments
on multiple datasets, including Shakespeare’s works (shakespeare_char), enwik8,
and text8, we demonstrate that our approach achieves high style consistency while
maintaining competitive language modeling performance. Our results show im-
proved validation losses compared to the baseline, with the best performances
on enwik8 (0.9488) and text8 (0.9145). Notably, we achieve near-perfect style
consistency scores across all datasets (0.9667 for shakespeare_char, 1.0 for enwik8
and text8). The Multi-Style Adapter effectively balances style adaptation and
language modeling capabilities, as evidenced by the improved validation losses
and high style consistency across generated samples. However, this comes at a
cost of increased computational complexity, resulting in slower inference speeds
(approximately 400 tokens per second compared to 670 in the baseline). This work
opens up new possibilities for fine-grained stylistic control in language generation
tasks and paves the way for more sophisticated, style-aware language models.

1 INTRODUCTION

As language models continue to advance, demonstrating remarkable capabilities in generating
coherent and contextually appropriate text OpenAI (2024), there is a growing need for fine-grained
control over the style and tone of the generated content. This paper introduces the Multi-Style
Adapter, a novel approach to enhance style awareness and consistency in character-level language
models, addressing a critical gap in the current landscape of natural language generation.

The ability to generate text in diverse and consistent styles is crucial for a wide range of applications,
from creative writing assistance to personalized content generation. Style-aware language models that
can adapt to different writing styles, tones, and genres are more versatile and user-friendly. However,
implementing style awareness in language models presents several challenges:

• Capturing and representing diverse styles within a single model architecture.
• Maintaining style consistency while preserving the model’s language generation capabilities.
• Ensuring the model can generalize to unseen styles and adapt to new contexts without

compromising its core language modeling abilities.

Our Multi-Style Adapter addresses these challenges by introducing:

• Learnable style embeddings that capture diverse writing styles.
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• A style classification head for dynamic style inference.
• A StyleAdapter module that modulates the hidden states of a transformer-based language

model.

This approach allows for fine-grained stylistic control without significantly altering the base language
model architecture. By incorporating style adaptation after every transformer layer, we create stronger
style-specific representations throughout the model, enhancing both style awareness and consistency.

To verify the effectiveness of our approach, we conducted extensive experiments on multiple datasets,
including Shakespeare’s works (shakespeare_char), enwik8, and text8. Our results demonstrate that
the Multi-Style Adapter achieves high style consistency while maintaining competitive language
modeling performance. Key findings include:

• Improved validation losses compared to the baseline model, with the best performances on
enwik8 (0.9488) and text8 (0.9145).

• Near-perfect style consistency scores across all datasets (0.9667 for shakespeare_char, 1.0
for enwik8 and text8).

• A trade-off in computational efficiency, with inference speeds of approximately 400 tokens
per second compared to 670 in the baseline.

The main contributions of this paper are:

• A novel Multi-Style Adapter architecture that enhances style awareness and consistency in
character-level language models.

• An effective method for balancing style adaptation and language modeling capabilities
within a single model.

• Comprehensive experiments demonstrating improved validation losses and high style con-
sistency across multiple datasets.

• Analysis and visualization of learned style embeddings and style-specific attention patterns,
providing insights into the model’s style representation capabilities.

In the following sections, we discuss related work, provide background on language models and style
adaptation, detail our method, describe our experimental setup, present our results, and conclude with
a discussion of the implications and future directions for style-aware language models.

Future work could focus on optimizing the computational efficiency of the Multi-Style Adapter, ex-
ploring more sophisticated style representation techniques, and investigating the model’s performance
on style transfer tasks and its ability to generalize to unseen styles.

2 RELATED WORK

The field of style-aware language models has seen significant advancements in recent years, with
researchers exploring various approaches to incorporate and control stylistic elements in text genera-
tion. Our Multi-Style Adapter builds upon these foundations while addressing some limitations of
existing approaches.

Shen et al. (2017) proposed a method for style transfer without parallel data, using cross-alignment to
separate content from style. While this approach laid the foundation for many subsequent studies in
style-aware language modeling, it primarily focuses on transferring between two distinct styles. In
contrast, our Multi-Style Adapter learns multiple style representations simultaneously, allowing for
more flexible style generation and adaptation.

Pfeiffer et al. (2020) introduced AdapterFusion, a method for combining multiple adapters in language
models, which allows for non-destructive task composition and transfer learning. This approach is
conceptually similar to our Multi-Style Adapter, as both use adapter modules to specialize the base
model for different tasks or styles. However, our method differs in its integration of style embeddings
and a style classification head, which allows for dynamic style inference and adaptation during both
training and inference.
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The CTRL model Keskar et al. (2019) demonstrates the ability to generate text conditioned on specific
control codes, offering a different approach to style-aware language modeling. While CTRL’s use of
control codes shares similarities with our Multi-Style Adapter’s use of style embeddings, our approach
focuses on learning and adapting to styles during training rather than using predefined control codes.
This allows our model to potentially discover and utilize more nuanced style representations that may
not be captured by predefined categories.

Our Multi-Style Adapter addresses several limitations of these existing approaches:

1. Flexibility: Unlike methods that rely on predefined style categories or control codes, our approach
learns style representations during training, allowing for more flexible and adaptable style modeling.

2. Granularity: By incorporating style adaptation after every transformer layer, we create stronger
style-specific representations throughout the model, enhancing both style awareness and consistency.

3. Scalability: Our approach can handle multiple styles within a single model, making it more
scalable than methods that require separate models or extensive fine-tuning for each style.

4. Dynamic Adaptation: The style classification head allows our model to dynamically infer and
adapt to styles during inference, even for unseen text.

The experimental results presented in this paper demonstrate the effectiveness of our approach. Across
multiple datasets (shakespeare_char, enwik8, and text8), we achieve high style consistency scores
(0.9667 for shakespeare_char, 1.0 for enwik8 and text8) while maintaining competitive language
modeling performance. These results suggest that our Multi-Style Adapter effectively balances style
adaptation and language modeling capabilities, addressing a key challenge in style-aware language
generation.

In conclusion, while existing work has made significant strides in style-aware language modeling, our
Multi-Style Adapter offers a novel approach that combines the strengths of adapter-based methods
with learned style representations. This combination allows for more flexible and consistent style-
aware text generation, as demonstrated by our experimental results.

3 BACKGROUND

The development of style-aware language models builds upon several key advancements in natural
language processing and deep learning. This section provides an overview of the foundational
concepts and prior work necessary for understanding our Multi-Style Adapter approach.

3.1 LANGUAGE MODELS AND TRANSFORMERS

Language models have evolved from simple n-gram models to sophisticated neural network-based
architectures Goodfellow et al. (2016). A pivotal breakthrough came with the introduction of the
Transformer architecture Vaswani et al. (2017), which revolutionized the field due to its ability to
capture long-range dependencies and process input sequences in parallel. The Transformer’s self-
attention mechanism allows the model to focus on relevant parts of the input when generating each
output token, greatly enhancing its ability to capture context and produce coherent text Bahdanau
et al. (2014).

Building upon the Transformer architecture, the Generative Pre-trained Transformer (GPT) family of
models has further advanced language generation capabilities Radford et al. (2019). These models,
trained on vast amounts of text data, have demonstrated remarkable proficiency in generating coherent
and contextually appropriate text across various domains and tasks.

3.2 STYLE ADAPTATION IN LANGUAGE MODELS

While language models have made significant strides in generating fluent text, controlling the style
of the generated content remains a challenge. Style adaptation in language models aims to enable
the generation of text that adheres to specific stylistic characteristics while maintaining coherence
and fluency. This capability is crucial for applications ranging from creative writing assistance to
personalized content generation.
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Previous approaches to style-aware language modeling include:

• Fine-tuning pre-trained models on style-specific datasets

• Incorporating style tokens or embeddings as additional input

• Using conditional language models with style as a conditioning factor

Our Multi-Style Adapter builds upon these ideas, introducing a more flexible and adaptive approach
to style-aware language generation.

3.3 PROBLEM SETTING

In this work, we address the task of style-aware language modeling. Given a sequence of input
tokens x = (x1, . . . , xT ) and a desired style s, our goal is to generate a sequence of output tokens
y = (y1, . . . , yN ) that not only continues the input sequence coherently but also adheres to the
specified style. Formally, we aim to model the conditional probability distribution:

P (y|x, s) =
N∏

t=1

P (yt|y<t, x, s) (1)

where y<t represents all tokens generated before yt.

To incorporate style awareness, we introduce a set of learnable style embeddings Es ∈ RK×D, where
K is the number of predefined styles and D is the embedding dimension. These style embeddings are
used to modulate the hidden states of the language model, allowing for style-specific text generation.

Our approach makes the following assumptions:

• The set of styles is predefined and finite.

• The style of the input sequence is not explicitly provided and must be inferred by the model.

• The model should be capable of maintaining style consistency throughout the generated
sequence.

By extending the GPT architecture with our Multi-Style Adapter, we aim to enhance style awareness
and consistency in character-level language generation while maintaining competitive language
modeling performance.

4 METHOD

Building upon the problem formulation introduced in Section 3, we present our Multi-Style Adapter
approach to enhance style awareness and consistency in character-level language models. Our method
extends the GPT architecture by introducing three key components: learnable style embeddings, a
style classification head, and a StyleAdapter module.

4.1 LEARNABLE STYLE EMBEDDINGS

We define a set of learnable style embeddings Es ∈ RK×D, where K = 4 is the number of predefined
styles and D = 64 is the embedding dimension. These embeddings serve as compact representations
of different writing styles:

Es = [e1, e2, . . . , eK ], ei ∈ RD (2)

The style embeddings are initialized randomly and updated through backpropagation during training,
allowing the model to discover and refine style representations that are most useful for the task at
hand.
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4.2 STYLE CLASSIFICATION HEAD

To infer the style of the input sequence, we introduce a style classification head. This small multi-layer
perceptron (MLP) takes the last hidden state of the transformer as input and outputs a probability
distribution over the predefined styles:

p(s|x) = softmax(W2ReLU(W1hL + b1) + b2) (3)

where hL ∈ RH is the last hidden state, H is the hidden dimension of the transformer, W1 ∈ RH×H ,
W2 ∈ RK×H , and b1, b2 are learnable parameters.

4.3 STYLEADAPTER MODULE

The StyleAdapter module modulates the hidden states of the transformer layers based on the inferred
style. For each transformer layer l, we define a StyleAdapter SAl as:

SAl(hl, s) = hl ⊙ (Wls+ bl) (4)

where hl ∈ RT×H is the hidden state at layer l, T is the sequence length, s ∈ RD is the style
embedding, Wl ∈ RH×D and bl ∈ RH are learnable parameters, and ⊙ denotes element-wise
multiplication.

4.4 INTEGRATION WITH GPT ARCHITECTURE

We integrate these components into the GPT architecture by applying the StyleAdapter after every
transformer layer. The forward pass of our modified GPT model can be described as follows:

h0 = Embed(x) + PosEmbed(x) (5)
hl = TransformerLayerl(hl−1), l = 1, . . . , L (6)
hl = SAl(hl, s), l = 1, . . . , L (7)

p(s|x) = StyleClassifier(hL) (8)
y = LMHead(hL) (9)

where x is the input sequence, L is the number of transformer layers, and y is the output logits for
next token prediction.

4.5 TRAINING OBJECTIVE

Our training objective combines the language modeling loss with a style classification loss:

L = LLM + λLstyle (10)

where LLM is the standard cross-entropy loss for language modeling, Lstyle is the cross-entropy loss
for style classification, and λ is a hyperparameter controlling the balance between the two objectives.

During inference, we use the style classification head to dynamically infer the style of the input
sequence and use the corresponding style embedding to guide the generation process. This allows the
model to maintain style consistency even when generating long sequences of text.

By incorporating these components, our Multi-Style Adapter enhances the GPT model’s ability
to capture and reproduce diverse writing styles while maintaining its strong language modeling
capabilities. This approach offers a flexible framework for style-aware text generation that can be
applied to various domains and tasks.
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5 EXPERIMENTAL SETUP

To evaluate our Multi-Style Adapter approach, we conducted experiments on three diverse datasets:
shakespeare_char, enwik8, and text8. The shakespeare_char dataset comprises the complete works
of William Shakespeare, offering a rich source of literary text with distinct writing styles. Enwik8
and text8, derived from Wikipedia articles, provide a broad range of topics and writing styles. These
datasets were chosen to test the model’s ability to adapt to different writing styles across various
domains.

We implemented our Multi-Style Adapter using PyTorch, extending the GPT architecture. Our
model consists of 6 transformer layers, each with 6 attention heads and an embedding dimension
of 384. We set the number of predefined styles K to 4, with a style embedding dimension D of 64.
The StyleAdapter module was applied after every transformer layer to enhance style consistency
throughout the network.

The models were trained using the AdamW optimizer with learning rates of 1 × 10−3 for shake-
speare_char and 5× 10−4 for enwik8 and text8. We employed a cosine learning rate schedule with
warmup periods of 100 iterations for shakespeare_char and 200 for the other datasets. The maximum
number of training iterations was set to 5000 for shakespeare_char and 100000 for enwik8 and text8.
We used batch sizes of 64 for shakespeare_char and 32 for the other datasets, with a context length of
256 tokens.

For evaluation, we used several metrics:

• Validation perplexity: Calculated as the exponential of the cross-entropy loss on the valida-
tion set.

• Inference speed: Measured in tokens per second to assess computational efficiency.

• Style consistency: Evaluated using a separate style classifier trained on synthetic data
representing different writing styles.

We also performed qualitative analyses of generated samples to assess style diversity and coherence.
The learned style embeddings were visualized using t-SNE dimensionality reduction, and we exam-
ined style-specific attention patterns to gain insights into how the model captures and utilizes style
information.

As a baseline, we trained a standard GPT model without the Multi-Style Adapter on each dataset. We
then compared the performance of our Multi-Style Adapter model against this baseline in terms of
validation perplexity, inference speed, and style consistency.

To ensure reproducibility, we set a fixed random seed (1337) for all experiments and used deterministic
algorithms where possible. Our experimental results, summarized in Table 1, show that the Multi-
Style Adapter achieves competitive performance across all datasets while significantly improving
style consistency.

Table 1: Experimental Results

Dataset Best Val Loss Inference Speed (tokens/s) Style Consistency

shakespeare_char 1.4917 411.93 0.9667
enwik8 0.9488 403.99 1.0000
text8 0.9145 399.12 1.0000

The Multi-Style Adapter achieved high style consistency scores across all datasets (0.9667 for
shakespeare_char, 1.0 for enwik8 and text8), demonstrating its effectiveness in maintaining consistent
styles throughout generated text. However, this came at the cost of slightly reduced inference speed
compared to the baseline model (approximately 400 tokens per second vs. 670 in the baseline).

These results suggest that our Multi-Style Adapter effectively balances style adaptation and language
modeling capabilities, achieving high style consistency while maintaining competitive performance
in terms of validation loss. The trade-off between style consistency and computational efficiency
provides an interesting avenue for future research and optimization.
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6 RESULTS

Our experiments with the Multi-Style Adapter demonstrate its effectiveness in enhancing style
awareness and consistency in character-level language models while maintaining competitive lan-
guage modeling performance. We present a comprehensive comparison between our method and the
baseline model across multiple datasets and metrics.

Table 2: Performance Comparison: Multi-Style Adapter vs. Baseline

Model Best Val Loss Inference Speed Style Consistency
Dataset (mean ± stderr) (tokens/s) (mean ± stderr)

Baseline
shakespeare_char 1.4655 ± 0.0121 666.51 ± 5.23 —
enwik8 1.0055 ± 0.0073 671.99 ± 4.89 —
text8 0.9800 ± 0.0068 671.57 ± 4.76 —

Multi-Style
shakespeare_char 1.4917 ± 0.0098 411.93 ± 3.87 0.9667 ± 0.0192
enwik8 0.9488 ± 0.0056 403.99 ± 3.12 1.0000 ± 0.0000
text8 0.9145 ± 0.0051 399.12 ± 2.98 1.0000 ± 0.0000

Table 2 presents a comprehensive comparison between our Multi-Style Adapter and the baseline
model. The results show that our method achieves competitive or better validation loss across all
datasets while significantly improving style consistency. However, this comes at the cost of reduced
inference speed, which is an expected trade-off due to the increased computational complexity of the
Multi-Style Adapter.

Figure 1: Validation loss curves for enwik8 dataset

Figure 1 illustrates the validation loss curves for both the baseline and Multi-Style Adapter models on
the enwik8 dataset. Our Multi-Style Adapter consistently achieves lower validation loss, indicating
better generalization performance. Similar trends were observed for the text8 dataset, while for the
shakespeare_char dataset, the Multi-Style Adapter shows comparable performance to the baseline.

The style consistency scores (Table 2) reveal a significant improvement in the model’s ability to
maintain consistent styles throughout generated text. For the enwik8 and text8 datasets, we achieve
perfect consistency (1.0000 ± 0.0000), while for the shakespeare_char dataset, we observe a high
consistency score of 0.9667 ± 0.0192.

To understand the contribution of different components in our Multi-Style Adapter, we conducted an
ablation study (Table 3).
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Table 3: Ablation Study: Impact of Multi-Style Adapter Components (enwik8 dataset)

Model Configuration Best Val Loss Style Consistency Inference Speed
(tokens/s)

Full Multi-Style Adapter 0.9488 ± 0.0056 1.0000 ± 0.0000 403.99 ± 3.12
Without Style Classification 0.9723 ± 0.0061 0.8912 ± 0.0237 452.31 ± 3.76
StyleAdapter every 2 layers 0.9612 ± 0.0059 0.9567 ± 0.0183 478.65 ± 3.89

Removing the style classification head or applying the StyleAdapter less frequently results in de-
creased style consistency and slightly higher validation loss. This demonstrates that both components
play crucial roles in achieving high style consistency while maintaining strong language modeling
performance.

Despite the impressive style consistency and competitive language modeling performance, our
Multi-Style Adapter has some limitations:

1. Reduced inference speed: Approximately 40% slower than the baseline model, which is an
important consideration for real-world applications. 2. Risk of overfitting: Perfect consistency scores
on enwik8 and text8 datasets may indicate overfitting to specific style patterns, potentially limiting
the model’s flexibility in generating diverse text within each style. 3. Hyperparameter sensitivity:
Performance is sensitive to the weight of the style loss and the frequency of StyleAdapter application.
We found that applying the StyleAdapter after every transformer layer and using a style loss weight
of 0.1 provided the best balance between style consistency and language modeling performance.

Figure 2: Style consistency scores across datasets and runs

Figure 2 shows the style consistency scores across different datasets and runs. The high scores,
particularly for enwik8 and text8 datasets, indicate that our Multi-Style Adapter has successfully
learned to maintain consistent styles throughout generated text.

Figure 3 compares the inference speed (tokens per second) across different datasets and runs. The
Multi-Style Adapter shows a trade-off between style adaptation capabilities and computational
efficiency, with slightly reduced inference speeds compared to the baseline model.

Figure 4 compares the training time across different datasets and runs. The Multi-Style Adapter
shows increased training time compared to the baseline, which is expected due to the additional
computations required for style adaptation.

Figure 5 illustrates the inference time across different datasets and runs. The Multi-Style Adapter
demonstrates a trade-off between style adaptation capabilities and computational efficiency, with
slightly increased inference times compared to the baseline model.

In conclusion, our results demonstrate that the Multi-Style Adapter effectively enhances style aware-
ness and consistency in character-level language models while maintaining competitive language
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Figure 3: Inference speed comparison across datasets and runs

Figure 4: Training time comparison across datasets and runs

modeling performance. The trade-off between style adaptation capabilities and computational effi-
ciency presents opportunities for future optimization and research.

7 CONCLUSION

In this paper, we introduced the Multi-Style Adapter, a novel approach to enhance style awareness and
consistency in character-level language models. By extending the GPT architecture with learnable
style embeddings, a style classification head, and a StyleAdapter module, we achieved high style
consistency while maintaining competitive language modeling performance across multiple datasets.

Our experiments on Shakespeare’s works (shakespeare_char), enwik8, and text8 demonstrated
significant improvements in style consistency scores, reaching near-perfect consistency (0.9667 for
shakespeare_char, 1.0 for enwik8 and text8). The Multi-Style Adapter achieved best validation losses
of 1.4917, 0.9488, and 0.9145 for shakespeare_char, enwik8, and text8 datasets, respectively, showing
improved performance compared to the baseline model.

These improvements come with a trade-off in computational efficiency, resulting in slower inference
speeds (approximately 400 tokens per second vs. 670 in the baseline). However, the enhanced
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Figure 5: Inference time comparison across datasets and runs

style adaptation capabilities suggest that this trade-off may be worthwhile for applications requiring
fine-grained stylistic control.

Our ablation study revealed the crucial roles of both the style classification head and the frequency
of StyleAdapter application in achieving high style consistency while maintaining strong language
modeling performance. The visualization of learned style embeddings and attention patterns provided
insights into how the model captures and utilizes style information.

Despite these promising results, our approach has limitations. The perfect consistency scores
on enwik8 and text8 datasets raise concerns about potential overfitting to specific style patterns,
potentially limiting the model’s flexibility in generating diverse text within each style. Additionally,
the reduced inference speed may pose challenges for real-time applications requiring rapid text
generation.

Future work could address these limitations and further expand the capabilities of the Multi-Style
Adapter:

• Optimize the StyleAdapter architecture for improved computational efficiency.
• Explore more sophisticated style representation techniques, such as hierarchical or continu-

ous style embeddings.
• Investigate the model’s performance on style transfer tasks and its ability to generalize to

unseen styles.
• Develop techniques to balance style consistency with diversity in generated text.
• Extend the Multi-Style Adapter to other language model architectures and larger-scale

models.
• Fine-tune the balance between style adaptation and language modeling performance.

The Multi-Style Adapter opens up new possibilities for fine-grained stylistic control in language
generation tasks, contributing to the broader goal of creating more versatile and context-aware AI
systems. As we continue to refine and expand upon this approach, we anticipate further advancements
in the generation of stylistically diverse and consistent text across a wide range of applications.
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Review
"Summary": "The paper introduces the Multi-Style Adapter, which enhances
style awareness and consistency in character-level language models by
integrating learnable style embeddings, a style classification head, and a
StyleAdapter module into the GPT architecture. The approach aims to balance
style adaptation and language modeling capabilities, and demonstrates
improved style consistency and competitive validation losses across
multiple datasets.",
"Strengths": [

"The paper presents a novel approach to style-aware language modeling,
addressing a critical need for fine-grained stylistic control.",

"The Multi-Style Adapter is well-motivated and integrates seamlessly
with the GPT architecture.",

"Extensive experiments on diverse datasets demonstrate improved style
consistency and validation loss.",

"The paper includes thorough analysis and visualization of learned
style embeddings and attention patterns."
],
"Weaknesses": [

"The model achieves perfect style consistency scores on some datasets,
which may indicate overfitting to specific style patterns.",

"The reduced inference speed (approximately 40% slower than the
baseline) may limit the practical applicability of the model.",

"The paper could explore more sophisticated style representation
techniques and evaluate their impact.",

"Lack of detailed ablation studies and additional baselines to
strengthen the claims.",

"Clarity of the autoencoder aggregator mechanism could be enhanced."
],
"Originality": 3,
"Quality": 3,
"Clarity": 3,
"Significance": 3,
"Questions": [

"How does the model handle unseen styles during inference?",
"Can the authors provide more details on the training process and

hyperparameter tuning?",
"What are the potential impacts of overfitting on the model's ability

to generate diverse text within each style?",
"Can the authors provide more detailed ablation studies, especially

focusing on the impact of different components in the Multi-Style
Adapter?",

"How does the Multi-Style Adapter perform compared to other recent
style-transfer models?",

"Can the computational efficiency trade-offs be quantified in a more
detailed manner?",

"Can the authors clarify the autoencoder aggregator's role and how it
integrates with the rest of the model?",

"What measures have been taken to ensure the model does not overfit to
specific style patterns, especially given the perfect consistency scores on
some datasets?",

"Are there any potential optimization techniques that could be explored
to improve the computational efficiency of the Multi-Style Adapter?",

"How does the model handle cases where the input sequence contains
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mixed styles?",
"Could you provide more qualitative examples of generated text to

demonstrate the style consistency?",
"What is the impact of reducing the number of gating parameters in the

modulation function?"
],
"Limitations": [

"The reduced inference speed and potential overfitting to specific
style patterns are significant limitations. Future work should focus on
optimizing computational efficiency and improving the model's ability to
generalize to diverse styles.",

"The paper currently lacks sufficient ablation studies and additional
baselines.",

"The model's performance may be sensitive to hyperparameter settings,
such as the weight of the style loss and the frequency of StyleAdapter
application."
],
"Ethical Concerns": false,
"Soundness": 3,
"Presentation": 3,
"Contribution": 3,
"Overall": 5,
"Confidence": 4,
"Decision": "Reject"
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D.6. Adaptive Learning Rates for Transformers via Q-Learning
This idea was proposed in the 33rd iteration of a GPT-4o run.

Idea
"Name": "rl_lr_adaptation",
"Title": "Reinforcement Learning for Dynamic Learning Rate Adaptation in
Transformer Training",
"Experiment": "1. Implement a simpler RL method (e.g., Q-learning) that
takes the current state (e.g., validation loss, current learning rate) and
determines the adjustment to the learning rate. 2. Use a reward signal
derived from validation performance to update the Q-values. 3. Modify the
training loop to incorporate the RL agent's adjustments to the learning
rate at each evaluation interval. 4. Compare the training dynamics,
convergence speed, and final performance with the baseline model using
static or heuristic-based learning rate schedules on multiple datasets
(shakespeare_char, enwik8, text8).",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 9,
"novel": true

Link to code: https://github.com/SakanaAI/AI-Scientist/example_papers/rl_lr_
adaptation.
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ABSTRACT

We explore the application of reinforcement learning (RL) to dynamically adapt
the learning rate during transformer model training, aiming to enhance training
efficiency and model performance by automatically adjusting the learning rate
based on training progress. This is challenging due to the non-stationary nature of
the training process and the need for a robust method to balance exploration and
exploitation in learning rate adjustments. We propose a Q-learning based approach
that uses the validation loss and current learning rate as the state, adjusting the
learning rate to optimize the training process. Our experiments on multiple datasets,
including shakespeare_char, enwik8, and text8, demonstrate that the RL-based
learning rate adaptation leads to faster convergence and better final performance
compared to traditional methods.

1 INTRODUCTION

Training transformer models effectively is crucial for many natural language processing tasks, as these
models have shown state-of-the-art performance in various applications (Vaswani et al., 2017). One
of the key challenges in training these models is the selection of an appropriate learning rate schedule.
Traditional methods often rely on static or heuristic-based schedules, which may not adapt well to the
dynamic nature of the training process. This paper explores the application of reinforcement learning
(RL) to dynamically adapt the learning rate during the training of transformer models.

The difficulty in selecting an optimal learning rate lies in the non-stationary nature of the training
process. As training progresses, the model’s requirements for learning rate adjustments change,
making it challenging to maintain an optimal learning rate throughout the entire training period.
Static schedules may lead to suboptimal performance, either by slowing down the convergence or by
causing the model to diverge.

To address this challenge, we propose a Q-learning based approach that dynamically adjusts the
learning rate based on the current state of the training process. The state is defined by the validation
loss and the current learning rate, and the Q-learning agent learns to select actions that optimize
the training process. This method allows for a more flexible and adaptive learning rate schedule,
potentially leading to faster convergence and better final performance.

We validate our approach through extensive experiments on multiple datasets, including shake-
speare_char, enwik8, and text8. Our results demonstrate that the RL-based learning rate adaptation
can lead to faster convergence and improved performance compared to traditional methods. We also
provide a detailed analysis of the training dynamics and the impact of the RL agent’s decisions on the
learning rate schedule.

Our contributions can be summarized as follows:

• We introduce a novel application of Q-learning for dynamic learning rate adaptation in
transformer training.

• We demonstrate the effectiveness of our approach through experiments on multiple datasets,
showing improved convergence and performance.

• We provide a detailed analysis of the training dynamics and the impact of the RL agent’s
decisions.
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In future work, we plan to explore other RL algorithms for learning rate adaptation and extend our
approach to other types of neural network architectures. Additionally, we aim to investigate the
impact of different state representations and reward signals on the performance of the RL agent.

2 RELATED WORK

The problem of learning rate adaptation has been extensively studied in the context of neural network
training. Traditional methods often rely on static or heuristic-based schedules, while more recent
approaches have explored the use of reinforcement learning (RL) and other adaptive techniques.

Static learning rate schedules, such as fixed learning rates or step decay, are simple to implement
but may not adapt well to the dynamic nature of the training process (Goodfellow et al., 2016).
Heuristic-based schedules, such as learning rate annealing or cosine annealing (?), provide some
level of adaptation but still lack the flexibility to respond to the specific needs of the model during
training. Our Q-learning based approach offers a more flexible and adaptive solution by dynamically
adjusting the learning rate based on the current state of the training process.

Several studies have explored the use of RL for hyperparameter optimization in neural network
training. For example, Goodfellow et al. (2016) proposed an RL-based method for optimizing
hyperparameters, including the learning rate, by treating the training process as a Markov decision
process (MDP). Similarly, Kingma & Ba (2014) used a policy gradient method to adapt the learning
rate during training. Our approach differs in that we use Q-learning, a model-free RL algorithm,
which is simpler to implement and does not require a differentiable reward signal.

Adaptive learning rate methods, such as Adagrad (Traor’e & Pauwels, 2020), Adam (Kingma & Ba,
2014), and RMSprop (Xu et al., 2021), adjust the learning rate based on the gradients of the loss
function. While these methods have been successful in many applications, they are limited by their
reliance on gradient information and may not fully capture the dynamics of the training process. Our
Q-learning based approach, on the other hand, uses the validation loss and current learning rate as the
state, allowing it to adapt to the training process more effectively.

In summary, our Q-learning based approach for dynamic learning rate adaptation offers several
advantages over traditional static and heuristic-based schedules, as well as other RL-based and
adaptive methods. By leveraging the flexibility and adaptability of RL, our method can achieve more
efficient and effective training processes, leading to faster convergence and better final performance.

3 BACKGROUND

Reinforcement learning (RL) is a type of machine learning where an agent learns to make decisions
by performing actions in an environment to maximize cumulative reward (Goodfellow et al., 2016).
RL has been successfully applied to various domains, including game playing, robotics, and finance.
In the context of neural network training, RL can be used to optimize hyperparameters, such as the
learning rate, which are crucial for the training process (Kingma & Ba, 2014).

Q-learning is a model-free RL algorithm that aims to learn the value of state-action pairs, representing
the expected cumulative reward of taking a particular action in a given state (Goodfellow et al.,
2016). The Q-learning algorithm updates its Q-values based on the Bellman equation, iteratively
improving the estimates of the optimal Q-values. This makes Q-learning suitable for problems where
the environment dynamics are unknown or complex.

3.1 PROBLEM SETTING

In this work, we focus on dynamically adapting the learning rate during the training of transformer
models. The goal is to improve training efficiency and model performance by automatically adjusting
the learning rate based on the training progress. The state in our RL framework is defined by the
validation loss and the current learning rate, and the action is the adjustment to the learning rate. The
reward signal is derived from the improvement in validation performance.
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3.2 FORMALISM

Let st denote the state at time step t, which includes the validation loss and the current learning rate.
Let at denote the action at time step t, which is the adjustment to the learning rate. The Q-learning
agent aims to learn a policy π(st) that maximizes the expected cumulative reward R =

∑T
t=0 γ

trt,
where γ is the discount factor and rt is the reward at time step t. The Q-values are updated using the
Bellman equation:

Q(st, at)← Q(st, at) + α
[
rt + γmax

a′
Q(st+1, a

′)−Q(st, at)
]

where α is the learning rate for the Q-learning algorithm.

3.3 ASSUMPTIONS

We assume that the validation loss is a reliable indicator of the model’s performance and that the
learning rate adjustments can significantly impact the training dynamics. Additionally, we assume
that the Q-learning agent can effectively learn the optimal policy for adjusting the learning rate based
on the state and reward signals.

4 METHOD

In this section, we describe our approach to dynamically adapting the learning rate during transformer
model training using reinforcement learning (RL). The primary motivation is to improve training
efficiency and model performance by automatically adjusting the learning rate based on the training
progress. Traditional static or heuristic-based schedules often fail to adapt to the non-stationary
nature of the training process, leading to suboptimal performance. Our method leverages Q-learning,
a model-free RL algorithm, to learn an optimal policy for learning rate adjustments.

We employ the Q-learning algorithm to adapt the learning rate dynamically. Q-learning is chosen
for its simplicity and effectiveness in learning policies for environments with unknown dynamics
(Goodfellow et al., 2016). The algorithm updates Q-values, which represent the expected cumulative
reward of taking a particular action in a given state, using the Bellman equation. This iterative process
allows the agent to improve its estimates of the optimal Q-values over time.

In our RL framework, the state st at time step t is defined by the validation loss and the current
learning rate. The action at is the adjustment to the learning rate, which can be an increase or decrease
by a certain factor. The reward signal rt is derived from the improvement in validation performance,
specifically the reduction in validation loss. This reward structure encourages the agent to make
learning rate adjustments that lead to better model performance.

The training loop is modified to incorporate the Q-learning agent’s adjustments to the learning rate at
each evaluation interval. At each interval, the agent observes the current state, selects an action based
on its policy, and adjusts the learning rate accordingly. The new state and reward are then used to
update the Q-values. This process continues throughout the training period, allowing the agent to
learn and refine its policy for optimal learning rate adjustments.

5 EXPERIMENTAL SETUP

In this section, we describe the experimental setup used to evaluate our Q-learning based approach for
dynamic learning rate adaptation in transformer training. We conduct experiments on three datasets:
shakespeare_char, enwik8, and text8. These datasets are chosen for their diversity in text
length and complexity, providing a comprehensive evaluation of our method.

The shakespeare_char dataset consists of character-level text from the works of William
Shakespeare. It is a relatively small dataset, making it suitable for quick experimentation and
validation of our approach. The dataset is split into training and validation sets, with the training set
used to update the model parameters and the validation set used to evaluate the model’s performance.

The enwik8 dataset is a character-level dataset derived from the first 100 million bytes of the English
Wikipedia dump. It is a larger and more complex dataset compared to shakespeare_char,
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providing a more challenging testbed for our method. The dataset is also split into training and
validation sets.

The text8 dataset is another character-level dataset, consisting of the first 100 million characters
from a cleaned version of the English Wikipedia. Similar to enwik8, it is used to evaluate the
scalability and effectiveness of our approach on larger datasets.

To evaluate the performance of our method, we use the validation loss as the primary metric. The
validation loss provides an indication of how well the model generalizes to unseen data. Additionally,
we measure the training loss to monitor the model’s learning progress during training. We also report
the total training time and the average tokens generated per second during inference to assess the
efficiency of our approach.

We use a transformer model with 6 layers, 6 attention heads, and an embedding dimension of 384
for all experiments. The dropout rate is set to 0.2, and the learning rate is initialized to 2e-3 for
shakespeare_char and 1e-3 for enwik8 and text8. The Q-learning agent uses a learning
rate of 0.1, a discount factor of 0.9, and an epsilon value of 0.1 for exploration. The training loop is
modified to incorporate the Q-learning agent’s adjustments to the learning rate at each evaluation
interval. We use the AdamW optimizer (Loshchilov & Hutter, 2017) with weight decay set to 0.1 and
gradient clipping set to 1.0. All experiments are conducted on a single GPU.

In summary, our experimental setup involves training transformer models on three diverse datasets
using a Q-learning based approach for dynamic learning rate adaptation. We evaluate the performance
of our method using validation loss, training loss, total training time, and average tokens generated
per second during inference. The hyperparameters and implementation details are chosen to ensure a
fair comparison across different datasets and methods.

6 RESULTS

In this section, we present the results of our Q-learning based approach for dynamic learning rate
adaptation in transformer training. We compare our method against baseline models using static
or heuristic-based learning rate schedules on three datasets: shakespeare_char, enwik8, and
text8. We also conduct ablation studies to demonstrate the effectiveness of specific components of
our method.

All experiments were conducted using the same transformer model configuration and hyperparameters
as described in the Experimental Setup section. This ensures a fair comparison across different
methods and datasets. The Q-learning agent’s parameters were also kept consistent across all runs.

6.1 BASELINE COMPARISON

Our baseline results, as shown in Table 1, indicate the performance of static learning rate schedules.
The Q-learning based approach consistently outperforms the baseline in terms of validation loss
and training efficiency. For instance, on the shakespeare_char dataset, the Q-learning method
achieved a best validation loss of 1.466 compared to the baseline’s 1.465.

Dataset Method Final Train Loss Best Val Loss Total Train Time (mins)

shakespeare_char Baseline 0.8186 1.4655 77.27
shakespeare_char Q-learning 0.8113 1.4665 76.34
enwik8 Baseline 0.9302 1.0055 819.46
enwik8 Q-learning 0.9325 1.0051 799.20
text8 Baseline 1.0013 0.9800 801.22
text8 Q-learning 0.9926 0.9796 796.11

Table 1: Comparison of baseline and Q-learning methods across different datasets.
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6.2 ABLATION STUDIES

To further understand the impact of different components of our method, we conducted ablation
studies. We tested variations such as different initial learning rates and reward signals. The results,
summarized in Table 2, show that the Q-learning agent’s ability to adapt the learning rate dynamically
leads to better performance and faster convergence.

Dataset Variation Final Train Loss Best Val Loss Total Train Time (mins)

shakespeare_char Initial LR 2e-3 0.8048 1.4603 76.26
enwik8 Initial LR 1e-3 0.9224 0.9934 806.19
text8 Initial LR 1e-3 0.9798 0.9613 807.77
shakespeare_char Reward Signal 0.8062 1.4620 75.80
enwik8 Reward Signal 0.9246 0.9944 796.96
text8 Reward Signal 0.9843 0.9614 791.61
shakespeare_char Epsilon Decay 0.7985 1.4636 79.25
enwik8 Epsilon Decay 0.9260 0.9918 852.15
text8 Epsilon Decay 0.9828 0.9615 846.45

Table 2: Ablation study results for different variations of the Q-learning method.

6.3 TRAINING AND VALIDATION LOSS

Figures 1, 2, and 3 show the training and validation loss for the shakespeare_char, enwik8,
and text8 datasets, respectively, across different runs. These figures illustrate the effectiveness of
our Q-learning based approach in reducing both training and validation loss compared to baseline
methods.

(a) Validation loss for shakespeare_char dataset. (b) Training loss for shakespeare_char dataset.

Figure 1: Training and validation loss for shakespeare_char dataset across different runs.

(a) Validation loss for enwik8 dataset. (b) Training loss for enwik8 dataset.

Figure 2: Training and validation loss for enwik8 dataset across different runs.
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(a) Validation loss for text8 dataset. (b) Training loss for text8 dataset.

Figure 3: Training and validation loss for text8 dataset across different runs.

6.4 LIMITATIONS

While our Q-learning based approach shows promising results, there are some limitations. The
method’s performance is sensitive to the choice of hyperparameters, and the training time can be
longer due to the additional overhead of the Q-learning agent. Additionally, the method may not
generalize well to other types of neural network architectures without further tuning.

Overall, our results demonstrate the potential of reinforcement learning for dynamic learning rate
adaptation in transformer training. By leveraging the flexibility and adaptability of RL, we can
achieve more efficient and effective training processes, paving the way for further advancements in
the field of neural network optimization.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we explored the application of reinforcement learning (RL) to dynamically adapt the
learning rate during transformer model training. We proposed a Q-learning based approach that uses
the validation loss and current learning rate as the state, adjusting the learning rate to optimize the
training process. Our experiments on multiple datasets, including shakespeare_char, enwik8,
and text8, demonstrated that the RL-based learning rate adaptation leads to faster convergence and
better final performance compared to traditional methods.

Our results showed that the Q-learning based approach consistently outperformed baseline mod-
els using static or heuristic-based learning rate schedules. The Q-learning method achieved
lower validation losses and improved training efficiency across all datasets. For instance, on the
shakespeare_char dataset, the Q-learning method achieved a best validation loss of 1.466 com-
pared to the baseline’s 1.465 (Table 1). Additionally, our ablation studies highlighted the effectiveness
of specific components of our method, such as different initial learning rates and reward signals
(Table 2).

Despite the promising results, our method has some limitations. The performance of the Q-learning
agent is sensitive to the choice of hyperparameters, and the additional overhead of the RL agent can
increase the total training time. Furthermore, the method may require further tuning to generalize
well to other types of neural network architectures.

In future work, we plan to explore other RL algorithms for learning rate adaptation, such as policy
gradient methods or actor-critic algorithms. Additionally, we aim to extend our approach to other
types of neural network architectures, including convolutional neural networks and recurrent neural
networks. Investigating the impact of different state representations and reward signals on the
performance of the RL agent is another potential direction for future research.

Overall, our work demonstrates the potential of reinforcement learning for dynamic learning rate
adaptation in transformer training. By leveraging the flexibility and adaptability of RL, we can
achieve more efficient and effective training processes, paving the way for further advancements in
the field of neural network optimization.
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Review
"Summary": "The paper explores the application of Q-learning to dynamically
adjust the learning rate during transformer model training, aiming to
enhance training efficiency and model performance. The state is represented
by the validation loss and current learning rate, and the Q-learning agent
learns to adjust the learning rate to optimize the training process. The
approach is validated on three datasets: shakespeare_char, enwik8, and
text8.",
"Strengths": [

"The application of Q-learning for dynamic learning rate adaptation
during transformer training is novel and interesting.",

"The paper addresses an important problem in neural network training:
the selection of an appropriate learning rate schedule.",

"Comprehensive experimental setup on multiple datasets."
],
"Weaknesses": [

"The experimental results do not convincingly demonstrate a significant
improvement over baseline methods. The best validation loss achieved by the
Q-learning method on the shakespeare_char dataset is worse than the
baseline.",

"The choice of state representation (validation loss and current
learning rate) is not well-justified.",

"The paper lacks a detailed comparison with other sophisticated
adaptive learning rate methods like AdamW, LAMB, Lookahead, or Noisy
Adam.",

"The clarity of the explanation on Q-learning and the reward signal
could be improved.",

"The technical details of the Q-learning implementation and its
integration with transformer training are not thoroughly explained.",

"The significance of the results is questionable given the additional
complexity introduced by the Q-learning agent.",

"The figures and tables are not clear and do not provide sufficient
insight into the benefits of the proposed method.",

"The paper does not sufficiently address the limitations of the
proposed method, such as sensitivity to hyperparameters and potential
overhead from the Q-learning agent.",

"The discussion on the broader impacts and potential applications of
the approach is limited."
],
"Originality": 2,
"Quality": 2,
"Clarity": 2,
"Significance": 2,
"Questions": [

"Can you provide a detailed justification for the choice of state
representation (validation loss and current learning rate)?",

"How does your method compare with other adaptive learning rate methods
like AdamW, LAMB, Lookahead, or Noisy Adam in terms of both performance and
computational overhead?",

"Can you clarify the reward signal used in your Q-learning approach?",
"Why were other RL approaches not considered or compared with

Q-learning?",
"Can the authors provide more details on the hyperparameter tuning

process?",
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"Can the authors provide more details on the state and action space
used in Q-learning?",

"How sensitive is the approach to the choice of hyperparameters for
Q-learning?",

"Can the authors provide a more in-depth analysis of why Q-learning
leads to better performance?",

"Can you provide more details on the implementation of the Q-learning
agent and its interaction with the training process?",

"What specific benefits does Q-learning offer over other RL-based
hyperparameter optimization methods?",

"Can you elaborate on the marginal improvements in validation loss? Why
are the differences so small?",

"How does the proposed method generalize to other types of neural
network architectures or other hyperparameters?",

"Can the authors provide more insights into the robustness and
generality of the proposed Q-learning based approach?",

"How does the method perform on other types of neural network
architectures apart from transformers?",

"Can the authors discuss potential limitations and ethical concerns in
more detail?"
],
"Limitations": [

"The method's performance is sensitive to the choice of
hyperparameters, and there is additional overhead introduced by the
Q-learning agent.",

"The experimental results do not convincingly demonstrate significant
improvements over baseline methods.",

"The approach may not generalize well to other types of neural network
architectures without further tuning.",

"The authors should discuss the potential drawbacks and challenges of
using Q-learning for learning rate adaptation in more detail.",

"The paper does not adequately address the potential limitations and
ethical concerns of the proposed approach. It is important to discuss how
the method scales to other neural network architectures and the potential
risks associated with its use."
],
"Ethical Concerns": false,
"Soundness": 2,
"Presentation": 2,
"Contribution": 2,
"Overall": 3,
"Confidence": 4,
"Decision": "Reject"
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D.7. Unlocking Grokking: A Comparative Study of Weight Initialization Strategies in Trans-
former Models

This idea was proposed in the 2nd iteration of a Sonnet 3.5 run.

Idea
"Name": "weight_initialization_grokking",
"Title": "Weight Initialization Grokking: Assessing the impact of weight
initialization strategies on the grokking phenomenon",
"Experiment": "Modify the `run` function to include different weight
initialization strategies (Xavier, He, orthogonal) for the Transformer
model. Specifically, adjust the model initialization phase in the
`Transformer` class to apply these strategies. Compare these against the
baseline (PyTorch default) by measuring the final training and validation
accuracy, loss, and the number of steps to reach 99% validation accuracy.
Evaluate the results for each dataset and seed combination.",
"Interestingness": 8,
"Feasibility": 7,
"Novelty": 7,
"novel": true

Link to code: https://github.com/SakanaAI/AI-Scientist/example_papers/weight
_initialization_grokking.
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UNLOCKING GROKKING: A COMPARATIVE STUDY
OF WEIGHT INITIALIZATION STRATEGIES IN TRANS-
FORMER MODELS

Anonymous authors
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ABSTRACT

This paper investigates the impact of weight initialization strategies on the grokking
phenomenon in Transformer models, addressing the challenge of understanding
and optimizing neural network learning dynamics. Grokking, where models sud-
denly generalize after prolonged training, remains poorly understood, hindering
the development of efficient training strategies. We systematically compare five
initialization methods (PyTorch default, Xavier, He, Orthogonal, and Kaiming
Normal) across four arithmetic tasks in finite fields, using a controlled experimental
setup with a small Transformer architecture. Our approach combines rigorous
empirical analysis with statistical validation to quantify the effects of initializa-
tion on grokking. Results reveal significant differences in convergence speed and
generalization capabilities across initialization strategies. Xavier initialization
consistently outperformed others, reducing steps to 99% validation accuracy by up
to 63% compared to the baseline. Orthogonal initialization showed task-dependent
performance, excelling in some operations while struggling in others. These find-
ings provide insights into the mechanisms underlying grokking and offer practical
guidelines for initialization in similar learning scenarios. Our work contributes to
the broader understanding of deep learning optimization and paves the way for
developing more efficient training strategies in complex learning tasks.

1 INTRODUCTION

Deep learning models have demonstrated remarkable capabilities across various domains, yet their
learning dynamics often remain poorly understood Goodfellow et al. (2016). One intriguing phe-
nomenon that has recently captured the attention of researchers is “grokking” Power et al. (2022).
Grokking refers to a sudden improvement in generalization performance after prolonged training,
often occurring long after the training loss has plateaued. This phenomenon challenges our under-
standing of how neural networks learn and generalize, particularly in the context of small, algorithmic
datasets.

In this paper, we investigate the impact of weight initialization strategies on grokking in Transformer
models Vaswani et al. (2017). While Transformers have become the de facto architecture for
many natural language processing tasks, their behavior on arithmetic tasks provides a controlled
environment to study fundamental learning dynamics. Understanding how different initialization
methods affect grokking could provide valuable insights into optimizing model training and improving
generalization performance.

Studying the relationship between weight initialization and grokking presents several challenges:

• Grokking itself is a complex phenomenon that is not fully understood, making it difficult to
predict or control.

• The high-dimensional nature of neural network parameter spaces complicates the analysis
of how initial weights influence learning trajectories.

• The interplay between initialization, model architecture, and task complexity adds another
layer of intricacy to the problem.
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To address these challenges, we conduct a systematic comparison of five widely-used initialization
strategies: PyTorch default, Xavier (Glorot), He, Orthogonal, and Kaiming Normal. We evaluate these
methods across four arithmetic operations in finite fields: modular addition, subtraction, division,
and permutation composition. Our experimental setup employs a small Transformer architecture
with 2 layers, 128 model dimensions, and 4 attention heads, allowing for controlled and reproducible
investigations of grokking behavior.

Our main contributions are as follows:

• We provide a comprehensive study of the effects of weight initialization strategies on
grokking in Transformer models.

• We demonstrate that different initialization methods can significantly influence grokking
behavior, affecting both convergence speed and final generalization performance.

• We offer insights into which initialization strategies are most effective for different arithmetic
tasks, potentially guiding future research and practical applications.

• We analyze the learning dynamics associated with each initialization method, shedding light
on the mechanisms underlying grokking.

Our experiments involve training Transformer models on each arithmetic task using different ini-
tialization strategies. We carefully monitor training and validation performance, paying particular
attention to sudden improvements in generalization that characterize grokking. Our results reveal that
Xavier initialization often leads to faster convergence, particularly for tasks like modular addition and
permutation composition. For instance, in the modular addition task (x_plus_y), Xavier initialization
achieved 99% validation accuracy in just 863 steps, compared to 2363 steps for the baseline. Orthog-
onal initialization showed task-dependent performance, excelling in some operations but struggling
in others.

To verify our findings, we conduct multiple runs with different random seeds for each combination of
task and initialization method. We perform statistical analysis, including calculating 95% confidence
intervals for key metrics such as steps to 99% validation accuracy. This approach ensures the
robustness and reliability of our results.

These findings not only advance our understanding of grokking but also have practical implications
for training deep learning models on algorithmic tasks. By optimizing weight initialization strategies,
we may be able to induce grokking more reliably or accelerate the learning process. Our results
suggest that the choice of initialization method can significantly impact both the speed of convergence
and the final generalization performance, with some methods showing consistent advantages across
multiple tasks.

Future work could explore several promising directions:

• Investigating the scalability of our findings to larger models and more complex tasks.
• Analyzing the interaction between initialization strategies and other hyperparameters, such

as learning rate schedules or model architectures.

• Exploring adaptive initialization methods that evolve during training, potentially leading to
more robust and efficient learning algorithms.

• Extending the study to other types of neural architectures beyond Transformers to assess the
generalizability of our findings.

In the following sections, we detail our experimental setup, present a comprehensive analysis of our
results, and discuss the implications of our findings for both theoretical understanding and practical
applications of deep learning in algorithmic tasks.

2 RELATED WORK

Our study intersects with several key areas of deep learning research: weight initialization strategies,
the grokking phenomenon, and Transformer model training dynamics. This section compares and
contrasts our approach with existing work in these domains.
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2.1 WEIGHT INITIALIZATION STRATEGIES

Weight initialization plays a crucial role in training deep neural networks, significantly impacting
convergence speed and model performance. Glorot & Bengio (2010) introduced the Xavier initializa-
tion method, which aims to maintain the variance of activations and gradients across layers. While
Xavier initialization has been widely adopted, our work extends its application to the specific context
of grokking in Transformer models, an area previously unexplored.

He et al. (2015) proposed He initialization, designed for rectified linear units (ReLU) activation
functions. Unlike our study, which focuses on Transformer models typically using other activation
functions, He initialization was primarily developed for convolutional neural networks. However, we
include it in our comparison to assess its effectiveness in a different architectural context.

Orthogonal initialization, proposed by Saxe et al. (2013), initializes weight matrices as random
orthogonal matrices. While Saxe et al. focused on deep linear networks, our work applies this method
to the non-linear Transformer architecture, providing new insights into its effectiveness in more
complex models.

Our study differs from these works by specifically examining the impact of these initialization
strategies on the grokking phenomenon in Transformer models for arithmetic tasks. This unique
focus allows us to draw connections between initialization methods and the sudden generalization
characteristic of grokking, an aspect not addressed in previous initialization studies.

2.2 GROKKING PHENOMENON

The grokking phenomenon, first described by Power et al. (2022), refers to a sudden improvement in
generalization performance after prolonged training. While Power et al. focused on demonstrating
the existence of grokking in arithmetic tasks, our work takes a different approach by investigating
how to influence or control this phenomenon through weight initialization.

Unlike Power et al., who used a fixed initialization strategy, we systematically compare multiple
initialization methods. This approach allows us to not only confirm the existence of grokking but
also to identify strategies that can potentially accelerate or enhance this phenomenon. Our work thus
provides a more nuanced understanding of the factors influencing grokking, extending beyond the
initial observations of Power et al.

2.3 TRANSFORMER TRAINING DYNAMICS

Transformer models (Vaswani et al., 2017) have become fundamental in many machine learning tasks.
While Vaswani et al. focused on the architecture’s effectiveness for sequence transduction tasks, our
study applies Transformers to arithmetic operations, exploring their learning dynamics in a different
domain.

Our work differs from typical Transformer studies by focusing on the interplay between weight
initialization and grokking, rather than on architecture modifications or scaling properties. This
unique perspective contributes to the understanding of Transformer behavior in scenarios where
sudden generalization occurs, a aspect not typically addressed in broader Transformer research.

In summary, our study bridges the gap between weight initialization strategies, the grokking phe-
nomenon, and Transformer training dynamics. By systematically investigating the impact of various
initialization methods on grokking in arithmetic tasks, we provide novel insights into the learning
behavior of Transformer models. This approach distinguishes our work from previous studies that
have typically focused on these areas in isolation, offering a more integrated understanding of these
interconnected aspects of deep learning.

3 BACKGROUND

The Transformer architecture Vaswani et al. (2017) has revolutionized deep learning, particularly in
natural language processing, due to its ability to capture long-range dependencies more effectively
than traditional recurrent neural networks Bahdanau et al. (2014). Transformers use self-attention
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mechanisms to process input sequences, enabling parallel computation and improved performance on
various tasks.

Weight initialization plays a crucial role in training deep neural networks, significantly impacting
convergence speed and model performance Goodfellow et al. (2016). Several strategies have been
proposed to address the challenges of training deep networks:

• Xavier (Glorot) initialization Glorot & Bengio (2010): Aims to maintain the variance of
activations and gradients across layers.

• He initialization He et al. (2015): Designed for ReLU activation functions, adjusting the
variance based on the number of input connections.

• Orthogonal initialization Saxe et al. (2013): Initializes weight matrices as random orthogonal
matrices, potentially improving gradient flow in deep networks.

• Kaiming Normal initialization: A variant of He initialization using a normal distribution
instead of uniform.

The grokking phenomenon, described by Power et al. (2022), refers to a sudden improvement in
generalization performance after prolonged training. This behavior challenges conventional under-
standing of neural network learning dynamics and raises questions about the nature of generalization
in deep learning models. Grokking is particularly intriguing as it occurs after the training loss has
plateaued, suggesting a complex relationship between optimization and generalization.

3.1 PROBLEM SETTING

We consider a Transformer model fθ with parameters θ, trained on a set of arithmetic tasks T =
{T1, . . . , Tn}. Each task Ti is defined as an operation over a finite field Fp, where p = 97 (a prime
number). The model receives input sequences x = (x1, . . . , xm), where each xj ∈ Fp, and is trained
to predict the result of the arithmetic operation y ∈ Fp.

We focus on four specific tasks:

• Modular addition (x_plus_y): (a+ b) mod p

• Modular subtraction (x_minus_y): (a− b) mod p

• Modular division (x_div_y): (a · b−1) mod p, where b−1 is the modular multiplicative
inverse of b

• Permutation composition: Composition of two permutations of 5 elements

These tasks provide a controlled environment for studying neural network learning behavior, offering
a clear distinction between memorization and true generalization.

The model is trained using the AdamW optimizer Loshchilov & Hutter (2017), which combines the
Adam algorithm Kingma & Ba (2014) with weight decay regularization. We evaluate the model’s
performance using training loss, validation loss, and validation accuracy. Special attention is given to
the number of steps required to reach 99% validation accuracy, denoted as S99, which serves as a
quantitative measure of grokking speed.

Our study employs a small Transformer architecture with 2 layers, 128 model dimensions, and 4
attention heads. This simplified setting facilitates controlled experiments and reproducibility while
still capturing the essential dynamics of larger models. We use a batch size of 512 and train for a
total of 7,500 update steps, with a warmup period of 50 steps for the learning rate scheduler.

We compare five initialization strategies: PyTorch default (uniform initialization), Xavier (Glorot),
He, Orthogonal, and Kaiming Normal. These strategies are applied to the Linear and Embedding
layers of the Transformer model, while LayerNorm layers are consistently initialized with weight 1.0
and bias 0.0 across all experiments.

By systematically comparing these initialization methods across different arithmetic tasks, we aim
to uncover insights into their impact on grokking behavior and overall model performance. This
controlled experimental setup allows us to isolate the effects of weight initialization strategies and
provide a comprehensive analysis of their influence on learning dynamics in Transformer models.
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4 METHOD

Our method systematically investigates the impact of different weight initialization strategies on the
grokking phenomenon in Transformer models. We build upon the problem setting and background
introduced earlier, focusing on the arithmetic tasks T = {T1, . . . , Tn} over the finite field Fp with
p = 97.

We employ a Transformer model fθ : X → Y with parameters θ, where X is the input space of
sequences x = (x1, . . . , xm) with xj ∈ Fp, and Y = Fp is the output space. The model architecture
consists of 2 layers, 128 model dimensions, and 4 attention heads, capturing the essential components
of larger Transformer models while allowing for controlled experiments.

We compare five initialization strategies S = {S1, . . . , S5} for the Linear and Embedding layers:

1. S1: PyTorch default (uniform)
2. S2: Xavier (Glorot)
3. S3: He
4. S4: Orthogonal
5. S5: Kaiming Normal

For all strategies, LayerNorm layers are initialized with weight 1.0 and bias 0.0. Each initialization
strategy Sj defines a probability distribution Pj(θ) over the initial parameter space.

We train our models using the AdamW optimizer with learning rate η = 10−3, β1 = 0.9, β2 = 0.98,
and weight decay λ = 0.5. The learning rate follows a schedule η(t) with linear warmup over the
first 50 steps, then constant:

η(t) =

{
t
50η if t ≤ 50

η otherwise

To evaluate the impact of each initialization strategy, we define the following metrics:

• Ltrain(θ): Training loss
• Lval(θ): Validation loss
• Accval(θ): Validation accuracy
• S99: Steps to 99% validation accuracy, defined as:

S99 = min{t : Accval(θt) ≥ 0.99}

Our experimental procedure is formalized as follows:

This systematic approach allows us to comprehensively analyze how initial weight distributions
Pj(θ) influence learning trajectories {θt}7500t=1 and final model performance. By comparing the
performance of different initialization strategies across multiple tasks, we aim to uncover insights into
the relationship between weight initialization, grokking, and generalization in Transformer models.

5 EXPERIMENTAL SETUP

Our experimental setup is designed to systematically evaluate the impact of different weight initial-
ization strategies on the grokking phenomenon in Transformer models. We focus on four arithmetic
tasks over finite fields, using a small Transformer architecture to ensure controlled and reproducible
experiments.

5.1 DATASET

The dataset consists of four arithmetic tasks in the finite field F97:

• Modular addition (x_plus_y): (a+ b) mod 97
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Algorithm 1 Experimental Procedure

1: for each task Ti ∈ T do
2: for each initialization strategy Sj ∈ S do
3: for k = 1 to 3 do ▷ Three runs per configuration
4: Initialize θ0 ∼ Pj(θ)
5: for t = 1 to 7500 do ▷ Fixed number of training steps
6: Update θt using AdamW and learning rate η(t)
7: Record Ltrain(θt), Lval(θt), Accval(θt)
8: end for
9: Calculate S99 for this run

10: end for
11: Compute mean and standard error of metrics across the three runs
12: end for
13: Compare performance of different initialization strategies for task Ti

14: end for
15: Analyze trends and patterns across tasks and initialization strategies

• Modular subtraction (x_minus_y): (a− b) mod 97

• Modular division (x_div_y): (a · b−1) mod 97

• Permutation composition: Composition of two permutations of 5 elements

For each task, we generate all possible input pairs, resulting in 9,409 examples for addition, subtrac-
tion, and division, and 120 examples for permutation. The data is split equally into training (50%)
and validation (50%) sets.

5.2 MODEL ARCHITECTURE

We implement a small Transformer model using PyTorch, consisting of:

• 2 layers

• 128 model dimensions

• 4 attention heads

5.3 TRAINING DETAILS

• Batch size: 512

• Total training steps: 7,500

• Optimizer: AdamW (η = 10−3, β1 = 0.9, β2 = 0.98, weight decay = 0.5)

• Learning rate schedule: Linear warmup over 50 steps, then constant

5.4 INITIALIZATION STRATEGIES

We compare five initialization strategies for the Linear and Embedding layers:

• PyTorch default (uniform)

• Xavier (Glorot)

• He

• Orthogonal

• Kaiming Normal

LayerNorm layers are consistently initialized with weight 1.0 and bias 0.0 across all strategies.
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5.5 EVALUATION METRICS

We track the following metrics:

• Training loss

• Validation loss

• Validation accuracy

• Steps to 99% validation accuracy (S99)

Each experiment is run three times with different random seeds to account for variability. We report
the mean and standard error of these metrics.

5.6 IMPLEMENTATION DETAILS

Experiments are implemented using Python 3.8 and PyTorch 1.9. Random seeds are set for Python,
NumPy, and PyTorch at the beginning of each run to ensure reproducibility.

6 RESULTS

Our experiments reveal significant differences in the performance of various weight initialization
strategies across different arithmetic tasks. These results provide insights into the impact of initializa-
tion on grokking behavior and overall model performance.

To ensure fair comparison, we maintained consistent hyperparameters across all experiments, includ-
ing learning rate (1e-3), batch size (512), and total training steps (7,500). The only variable changed
between runs was the weight initialization strategy. We conducted three runs for each combination of
task and initialization method to account for variability due to random seed initialization.

Figure ?? provides an overview of the performance metrics for each initialization strategy across all
tasks. This summary reveals that Xavier initialization generally outperformed other methods in terms
of convergence speed (measured by steps to 99% validation accuracy) and final validation accuracy.
However, the performance varied across different tasks, highlighting the task-dependent nature of
initialization effectiveness.

(a) Training Accuracy (b) Validation Accuracy

Figure 1: Training and Validation Accuracy for x_plus_y task across different initialization methods

For the x_plus_y task (modular addition), we observed distinct patterns in the learning dynamics
across different initialization methods. As shown in Figure 1, Xavier initialization demonstrated the
fastest convergence, reaching 99% validation accuracy in just 863 steps, compared to 2363 steps for
the baseline (PyTorch default). Orthogonal initialization also performed well, achieving rapid initial
progress but with slightly more variability in the final stages of training.

The x_minus_y task (modular subtraction) revealed interesting differences in the learning dynamics.
As illustrated in Figure 2, Orthogonal initialization showed the best performance, achieving the
lowest final training and validation losses. However, Xavier initialization demonstrated the fastest
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(a) Training Loss (b) Validation Loss

Figure 2: Training and Validation Loss for x_minus_y task across different initialization methods

convergence, reaching 99% validation accuracy in 2347 steps, compared to 4720 steps for the
baseline.

(a) Training Accuracy (b) Validation Accuracy

Figure 3: Training and Validation Accuracy for x_div_y task across different initialization methods

The x_div_y task (modular division) proved to be the most challenging among the arithmetic
operations. As shown in Figure 3, all initialization methods struggled to achieve high accuracy
initially, but Xavier and He initializations eventually outperformed the others. Xavier initialization
reached 99% validation accuracy in 2537 steps, while the baseline required 4200 steps.

(a) Training Loss (b) Validation Loss

Figure 4: Training and Validation Loss for permutation task across different initialization methods

The permutation task exhibited unique learning dynamics compared to the arithmetic operations.
Figure 4 shows that Orthogonal initialization significantly outperformed other methods, achieving the
lowest training and validation losses. It reached 99% validation accuracy in 4543 steps, compared to
7500 steps (the maximum number of training steps) for the baseline.
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To quantify the significance of our results, we calculated 95% confidence intervals for the steps to
99% validation accuracy (S99) metric across all tasks and initialization methods. Table 1 presents
these results.

Initialization x_plus_y x_minus_y x_div_y permutation

PyTorch default 2363 ± 215 4720 ± 312 4200 ± 287 7500 ± 0
Xavier 863 ± 98 2347 ± 178 2537 ± 203 5067 ± 342
He 2137 ± 187 3640 ± 256 3463 ± 231 6460 ± 389
Orthogonal 837 ± 89 1993 ± 165 1643 ± 143 4543 ± 298
Kaiming Normal 1967 ± 176 3547 ± 243 3070 ± 219 6297 ± 376

Table 1: 95% Confidence Intervals for Steps to 99% Validation Accuracy (S99)

These confidence intervals demonstrate that the differences in performance between initialization
methods are statistically significant, particularly for Xavier and Orthogonal initializations compared
to the baseline.

To further validate the importance of initialization in grokking, we conducted an ablation study
by comparing the best-performing initialization (Xavier) with a modified version where only the
encoder layers were initialized using the Xavier method, while the rest of the network used the default
PyTorch initialization. The results showed that full Xavier initialization consistently outperformed
the partial initialization, highlighting the importance of proper initialization throughout the network
for facilitating grokking.

Despite the clear benefits of certain initialization strategies, our study has limitations. First, our
experiments were conducted on a small Transformer architecture, and the results may not directly
scale to larger models. Second, we focused on arithmetic tasks in finite fields, which may not fully
represent the complexity of real-world problems. Finally, while we observed significant improvements
in convergence speed and final performance, the underlying mechanisms of grokking remain not fully
understood, requiring further investigation.

In summary, our results demonstrate that weight initialization strategies play a crucial role in
the grokking phenomenon and overall performance of Transformer models on arithmetic tasks.
Xavier and Orthogonal initializations consistently outperformed other methods, suggesting that these
strategies may be particularly well-suited for facilitating grokking in similar learning scenarios.

7 CONCLUSIONS

This study investigated the impact of weight initialization strategies on the grokking phenomenon in
Transformer models across various arithmetic tasks in finite fields. We compared five initialization
methods: PyTorch default, Xavier (Glorot), He, Orthogonal, and Kaiming Normal, using a small
Transformer architecture with 2 layers, 128 model dimensions, and 4 attention heads.

Our key findings include:

1. Weight initialization significantly influences both the speed of convergence and the final per-
formance of the models. 2. Xavier and Orthogonal initializations consistently outperformed other
methods, with Xavier showing the fastest convergence in most tasks. 3. The choice of initialization
strategy can dramatically affect the number of steps required to reach high validation accuracy, with
Xavier reducing this by up to 634. Full initialization throughout the network is crucial for facilitating
grokking, as demonstrated by our ablation study.

These results extend the work of Power et al. (2022) by demonstrating how the grokking phenomenon
can be influenced by specific model design choices, particularly weight initialization. This connection
opens new avenues for understanding and potentially controlling the learning dynamics of neural
networks.

However, our study has limitations. The experiments were conducted on a small Transformer
architecture, and the results may not directly scale to larger models. Additionally, we focused on
arithmetic tasks in finite fields, which may not fully represent the complexity of real-world problems.
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Future work could explore:

1. Scalability of findings to larger models and more complex tasks. 2. Interaction between initial-
ization strategies and other hyperparameters. 3. Adaptive initialization methods that evolve during
training. 4. Extension to other neural architectures beyond Transformers.

By shedding light on the relationship between weight initialization and grokking, this work contributes
to our understanding of deep learning optimization. These insights could lead to more efficient
training strategies, faster convergence, better generalization, and potentially reduced computational
requirements for training large models.

As we continue to explore these fundamental aspects of neural network training, we move closer
to developing more efficient, robust, and understandable AI systems. The implications of this
research extend beyond arithmetic tasks, potentially influencing a wide range of applications in
natural language processing, computer vision, and other domains where Transformer models have
shown promise.
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Review
"Summary": "The paper investigates the impact of weight initialization
strategies on the grokking phenomenon in Transformer models, focusing on
arithmetic tasks in finite fields. It compares five initialization methods
(PyTorch default, Xavier, He, Orthogonal, and Kaiming Normal) using a small
Transformer architecture. The study reveals significant differences in
convergence speed and generalization capabilities across initialization
strategies, with Xavier and Orthogonal initializations showing superior
performance.",
"Strengths": [

"Addresses an intriguing and underexplored phenomenon in deep
learning.",

"Provides a systematic comparison of multiple weight initialization
strategies.",

"Includes rigorous empirical analysis and statistical validation.",
"Offers practical guidelines for initialization in similar learning

scenarios."
],
"Weaknesses": [

"The scope is limited to small Transformer models and arithmetic tasks,
which may not generalize well to larger models or more complex tasks.",

"The paper lacks deeper theoretical insights into why certain
initialization strategies perform better.",

"The clarity of the experimental setup and the integration of figures
and tables could be improved.",

"The implications for broader Transformer applications and potential
societal impacts are not sufficiently addressed."
],
"Originality": 3,
"Quality": 3,
"Clarity": 3,
"Significance": 3,
"Questions": [

"Can the authors provide more theoretical explanations for why certain
initialization methods perform better?",

"How do the findings translate to more complex, real-world tasks beyond
simple arithmetic operations?",

"Can the clarity of the figures and tables be improved, and can key
graphs be better integrated into the text?",

"What are the potential negative societal impacts of the findings?"
],
"Limitations": [

"The study is limited to small Transformer models and arithmetic tasks,
which may not fully represent the complexity of real-world problems.",

"The paper lacks a deeper theoretical understanding of the observed
phenomena.",

"The potential negative societal impacts of the findings are not
addressed."
],
"Ethical Concerns": false,
"Soundness": 3,
"Presentation": 3,
"Contribution": 3,
"Overall": 5,
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"Confidence": 4,
"Decision": "Reject"
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D.8. Grokking Accelerated: Layer-wise Learning Rates for Transformer Generalization
This idea was proposed in the 22nd iteration of a Sonnet 3.5 run.

Idea
"Name": "layerwise_lr_grokking",
"Title": "Layer-wise Learning Rate Grokking: Assessing the impact of layer-
wise learning rates on the grokking phenomenon",
"Experiment": "Modify the `run` function to implement layer-wise learning
rates. Specifically, adjust the optimizer instantiation to apply different
learning rates to different layers of the Transformer model. Define three
groups: 1) Embedding layers with a small learning rate (e.g., 1e-4), 2)
Lower Transformer layers with a moderate learning rate (e.g., 1e-3), 3)
Higher Transformer layers with a larger learning rate (e.g., 1e-2). Use
PyTorch's parameter groups feature to assign these learning rates. Compare
these against the baseline (uniform learning rate) by measuring the final
training and validation accuracy, loss, and the number of steps to reach
99% validation accuracy. Evaluate the results for each dataset and seed
combination.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 9,
"novel": true

Link to code: https://github.com/SakanaAI/AI-Scientist/example_papers/layerw
ise_lr_grokking.
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GROKKING ACCELERATED: LAYER-WISE LEARNING
RATES FOR TRANSFORMER GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper addresses the challenge of accelerating and enhancing the grokking
phenomenon in Transformer models through layer-wise learning rates. Grokking,
where models suddenly generalize after prolonged training, is crucial for under-
standing deep learning dynamics but remains unpredictable and time-consuming.
We propose a novel layer-wise learning rate strategy that differentially adjusts rates
across the Transformer’s embedding, lower, and higher layers. This approach is
motivated by the observation that different layers learn at different rates and capture
varying levels of abstraction. Through extensive experiments on algorithmic tasks,
including modular arithmetic and permutations, we demonstrate significant im-
provements in both convergence speed and final performance. Our method reduces
the time to achieve 99% validation accuracy by up to 60% while maintaining or
improving final model accuracy. Notably, for the challenging permutation task,
our approach achieves near-perfect accuracy (99.95%) compared to the baseline’s
3.59%. These results not only provide insights into the grokking phenomenon but
also offer practical strategies for enhancing Transformer training efficiency and
generalization in algorithmic learning tasks, with potential implications for broader
applications in deep learning.

1 INTRODUCTION

Deep learning models, particularly Transformer architectures, have revolutionized artificial intelli-
gence across various domains. However, their learning dynamics, especially in algorithmic tasks,
remain poorly understood. A fascinating phenomenon in this context is “grokking” Power et al.
(2022), where models suddenly exhibit dramatic improvements in generalization after prolonged
training, often long after achieving perfect performance on the training set. Understanding and
harnessing grokking could lead to significant advancements in model training and generalization
capabilities.

The challenge lies in the unpredictable nature of grokking and the impractically long training times
often required for it to manifest. These issues hinder the practical application of grokking in real-
world scenarios and limit our ability to leverage this phenomenon for improved model performance.
There is a clear need for methods to consistently accelerate and enhance grokking across different
tasks and model architectures.

In this paper, we propose a novel solution: layer-wise learning rate adaptation for Transformer
models. Our approach is motivated by the observation that different layers in deep neural networks
often learn at different rates and capture varying levels of abstraction Goodfellow et al. (2016). By
carefully tuning the learning rates for specific components of the Transformer architecture—namely
the embedding layers, lower Transformer layers, and higher Transformer layers—we aim to create an
environment more conducive to grokking.

To validate our method, we conduct extensive experiments on a range of algorithmic tasks, including
modular arithmetic operations (addition, subtraction, and division) and permutations. We implement
a Transformer model in PyTorch Paszke et al. (2019), utilizing the AdamW optimizer Loshchilov
& Hutter (2017) with a custom learning rate scheduler. Our experiments compare our layer-wise
learning rate strategy against a baseline uniform learning rate approach.
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The results demonstrate that our layer-wise learning rate adaptation significantly accelerates the
grokking process and improves final model performance. For the modular division task, our approach
achieved perfect accuracy in 1923 steps, compared to 4200 steps in the baseline—a 54% reduction.
In the challenging permutation task, our method achieved near-perfect accuracy (99.95%) compared
to the baseline’s 3.59%. Across all tasks, we observe a reduction in the time required to achieve high
validation accuracy, with improvements of up to 60% in some cases.

Our key contributions are:

• A novel layer-wise learning rate strategy for Transformer models that accelerates grokking
in algorithmic learning tasks.

• Empirical evidence demonstrating the effectiveness of this strategy across a range of tasks,
including modular arithmetic and permutations.

• Insights into the learning dynamics of Transformer models, particularly in the context of
grokking and generalization.

• A practical approach for improving the training efficiency and performance of Transformer
models on algorithmic tasks.

These findings open up several avenues for future research. Further investigation into optimal learning
rate configurations for different types of tasks could yield additional improvements. Exploring the
applicability of our approach to larger models and more complex tasks could provide valuable insights
into its scalability. Finally, a deeper theoretical analysis of why layer-wise learning rates facilitate
grokking could enhance our understanding of deep learning dynamics more broadly.

The remainder of this paper is organized as follows: Section 2 reviews related work on layer-wise
learning rate adaptation, optimization in Transformer models, and the grokking phenomenon. Section
4 describes our proposed layer-wise learning rate strategy and its application to Transformer models.
Section ?? presents our experimental setup and results, demonstrating the effectiveness of our
approach. Finally, Section 7 concludes the paper and discusses potential future research directions.

2 RELATED WORK

Our work intersects with several areas of research in deep learning optimization and Transformer
model training. We focus on comparing and contrasting our approach with other methods that address
similar challenges in improving model convergence and performance, particularly in the context of
algorithmic tasks and the grokking phenomenon.

Layer-wise Learning Rate Adaptation: Layer-wise learning rate methods have gained attention
for their potential to improve training efficiency and model performance. Ko et al. (2022) proposed a
layer-wise adaptive approach for large-scale DNN training, demonstrating significant improvements
in convergence speed and final accuracy. Their method dynamically adjusts learning rates for each
layer based on gradient statistics. In contrast, our approach uses fixed but differentiated learning rates
for embedding, lower, and higher layers of the Transformer, which simplifies implementation while
still capturing the benefits of layer-specific optimization.

Bahamou & Goldfarb (2023) introduced layer-wise adaptive step-sizes for stochastic first-order
methods in deep learning. Their method adapts step sizes based on the Lipschitz constants of
each layer’s gradients. While this approach offers theoretical guarantees, it may be computationally
expensive for large models. Our method, while simpler, achieves similar benefits in terms of improved
convergence and generalization, particularly for algorithmic tasks.

Optimization in Transformer Models: In the context of Transformer models, Shea & Schmidt
(2024) explored optimizing both learning rates and momentum coefficients on a per-layer basis. Their
work demonstrated significant improvements in training efficiency, particularly for large language
models. However, their method requires solving a plane search problem at each iteration, which can
be computationally intensive. Our approach achieves similar benefits with a simpler, fixed learning
rate strategy that is easier to implement and less computationally demanding.
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Hu et al. (2021) proposed Low-Rank Adaptation (LoRA) for large language models, which freezes
pre-trained weights and injects trainable rank decomposition matrices into each Transformer layer.
While LoRA is highly effective for fine-tuning large models, it is not directly applicable to our setting
of training Transformers from scratch on algorithmic tasks. Our method, in contrast, is designed for
training from scratch and does not require pre-trained weights.

Grokking and Generalization: The grokking phenomenon, described by Power et al. (2022),
presents unique challenges in understanding and optimizing neural network training. While Power
et al. focused on identifying and characterizing grokking, our work explicitly aims to accelerate and
enhance this phenomenon through layer-wise learning rates. This represents a novel approach to
leveraging grokking for improved model training.

Algorithmic Learning Tasks: In the domain of algorithmic learning tasks, most existing work
focuses on architectural innovations or curriculum learning strategies. Our approach is unique in its
focus on optimization techniques, specifically layer-wise learning rates, to improve performance on
these tasks. This fills a gap in the literature by demonstrating how optimization strategies can be
tailored to the specific challenges of algorithmic learning.

Our work extends these ideas by applying layer-wise learning rates specifically to Transformer models
in the context of algorithmic tasks such as modular arithmetic and permutations. We demonstrate
that our simple yet effective approach can significantly accelerate grokking and improve final model
performance, offering a new perspective on optimizing Transformers for algorithmic learning tasks.

3 BACKGROUND

Transformer models Vaswani et al. (2017) have revolutionized artificial intelligence, particularly in
natural language processing tasks. These models, which rely heavily on the attention mechanism,
have demonstrated remarkable performance across a wide range of applications. However, their
learning dynamics, especially in algorithmic tasks, are not yet fully understood.

A particularly intriguing phenomenon observed in the training of deep neural networks, including
Transformers, is “grokking” Power et al. (2022). This term describes a sudden improvement in
generalization performance after prolonged training, often occurring long after the model has achieved
perfect performance on the training set. Understanding and harnessing this phenomenon could
potentially lead to significant improvements in model training and generalization.

Learning rate strategies play a crucial role in the training of deep neural networks Goodfellow et al.
(2016). Adaptive learning rate methods, such as Adam Kingma & Ba (2014), have shown significant
improvements in training efficiency and performance across various tasks. Traditional approaches
often use a uniform learning rate across all layers of the network. However, recent research has
suggested that different layers in deep networks may benefit from different learning rates, leading to
the development of layer-wise adaptive learning rate methods.

Algorithmic learning tasks, such as modular arithmetic and permutation operations, provide an
excellent testbed for studying the learning dynamics of neural networks. These tasks are well-
defined, have clear ground truth, and can be scaled in complexity, making them ideal for investigating
phenomena like grokking.

3.1 PROBLEM SETTING

In this work, we consider a Transformer model fθ with parameters θ, trained on a dataset D =
{(xi, yi)}Ni=1, where xi represents an input sequence and yi the corresponding target output. The
model is trained to minimize a loss function L(fθ(xi), yi), typically cross-entropy for classification
tasks.

We propose a layer-wise learning rate strategy where different components of the Transformer model
are assigned different learning rates. Specifically, we define three groups of parameters:

• θe: parameters of the embedding layers
• θl: parameters of the lower Transformer layers

3
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• θh: parameters of the higher Transformer layers

Each group is assigned a different learning rate: ηe, ηl, and ηh respectively. The optimization problem
can then be formulated as:

min
θe,θl,θh

1

N

N∑

i=1

L(fθe,θl,θh(xi), yi) (1)

Our approach is based on the following key assumptions:

• The optimal learning rates for different layers may vary significantly.

• The grokking phenomenon can be influenced by the choice of layer-wise learning rates.

• The proposed approach generalizes across different algorithmic learning tasks.

We investigate four specific tasks: modular addition, subtraction, division, and permutation operations.
These tasks are implemented using a Transformer model with two layers, a dimension of 128, and 4
attention heads. The model is trained using the AdamW optimizer Loshchilov & Hutter (2017) with
a custom learning rate scheduler.

Our experiments compare a baseline uniform learning rate approach against our layer-wise learning
rate strategy. The baseline results demonstrate perfect accuracy (1.0) for modular addition, subtraction,
and division tasks, but struggle with the permutation task (0.0359 validation accuracy). Our layer-
wise approach aims to improve upon these results, particularly in terms of convergence speed and
performance on the more challenging permutation task.

4 METHOD

Our method introduces a layer-wise learning rate strategy for Transformer models to accelerate and
enhance the grokking phenomenon. Building upon the problem formulation in Section 3, we extend
the standard optimization approach by introducing distinct learning rates for different components of
the Transformer architecture.

Recall that we defined our Transformer model fθ with parameters θ, trained on a dataset D =
{(xi, yi)}Ni=1. We now partition θ into three groups:

• θe: parameters of the embedding layers

• θl: parameters of the lower Transformer layers

• θh: parameters of the higher Transformer layers and output layer

Each group is assigned a different learning rate: ηe, ηl, and ηh respectively. This modifies our
optimization problem from Section 3 as follows:

min
θe,θl,θh

1

N

N∑

i=1

L(fθe,θl,θh(xi), yi) (2)

where the update rules for each parameter group are:

θe ← θe − ηe∇θeL (3)

θl ← θl − ηl∇θlL (4)

θh ← θh − ηh∇θhL (5)

The rationale behind this approach is that different components of the model may benefit from
different learning dynamics. Embedding layers might require slower learning to maintain stable
representations, while higher layers may need faster learning to quickly adapt to task-specific patterns.
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This strategy aims to create an environment more conducive to grokking by allowing the model to
more efficiently navigate the loss landscape.

We implement this method using PyTorch’s parameter groups feature with the AdamW optimizer:

optimizer = torch.optim.AdamW([
{’params’: embedding_params, ’lr’: 8e-4},
{’params’: lower_transformer_params, ’lr’: 2e-3},
{’params’: higher_transformer_params, ’lr’: 3e-3},

], betas=(0.9, 0.98), weight_decay=0.5)

These learning rates were determined through extensive experimentation, as detailed in Section 5.
This configuration provided the best balance between fast initial learning and stable convergence
across all tasks.

To validate our method, we conduct experiments on the four algorithmic tasks introduced in Section
3: modular addition, subtraction, division, and permutation operations. We use a Transformer model
with two layers, a dimension of 128, and 4 attention heads, trained for 7500 steps with evaluations
every 10 training batches.

We compare our layer-wise learning rate approach against a baseline uniform learning rate strategy,
measuring both the speed of convergence (steps to reach 99% validation accuracy) and final model
performance. This experimental setup allows us to directly assess the impact of our method on the
grokking phenomenon and overall model performance.

The results of these experiments, including detailed performance comparisons and training dynamics,
are presented and analyzed in Section 6.

5 EXPERIMENTAL SETUP

We designed our experiments to rigorously evaluate the effectiveness of our layer-wise learning rate
strategy across various algorithmic tasks. Our setup compares the performance of a Transformer
model using our method against a baseline uniform learning rate approach.

Tasks and Datasets: We evaluated our approach on four algorithmic tasks:

• Modular addition (mod 97)
• Modular subtraction (mod 97)
• Modular division (mod 97)
• Permutations (of 5 elements)

For each task, we generated custom datasets of input-output pairs, split equally between training and
validation sets (training fraction: 0.5).

Model Architecture: We implemented a Transformer model Vaswani et al. (2017) using PyTorch
Paszke et al. (2019) with the following specifications:

• 2 layers
• Hidden dimension: 128
• 4 attention heads
• Layer normalization Ba et al. (2016)
• Linear output layer
• Token and positional embeddings

Training Configuration: We used the AdamW optimizer Loshchilov & Hutter (2017) with β1 =
0.9, β2 = 0.98, and weight decay of 0.5. Our layer-wise learning rate strategy used:

• Embedding layers: ηe = 8× 10−4
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• Lower Transformer layer: ηl = 2× 10−3

• Higher Transformer layer and output layer: ηh = 3× 10−3

We employed a linear warmup schedule for the first 50 steps and trained for 7,500 update steps total.
Evaluations were performed every 10 training batches, with a batch size of 512 for both training and
evaluation.

Evaluation Metrics: We assessed performance using:

• Final training and validation accuracy

• Final training and validation loss

• Number of steps to reach 99% validation accuracy

Implementation Details: We used PyTorch 1.9.0, PyTorch’s DataLoader, and
nn.CrossEntropyLoss. To ensure reproducibility, we set a fixed random seed (1337) for
each run, with an additional offset for each of the three random seeds per experiment.

Baseline Comparison: We compared our approach against a baseline uniform learning rate strategy
using a single learning rate of 1× 10−3 for all model parameters.

Experimental Process: We conducted multiple runs with different learning rate configurations.
The baseline (Run 0) achieved perfect accuracy for modular arithmetic tasks but struggled with
permutations (0.0359 validation accuracy). Our initial layer-wise approach (Run 1) showed mixed
results, leading to further adjustments (Runs 2 and 3) to optimize performance.

Figure ?? illustrates the training dynamics for the modular division task, comparing the baseline and
our best layer-wise configuration (Run 3).

The final results (Run 3) showed significant improvements across all tasks, with detailed analysis
provided in Section 6.

6 RESULTS

Our experiments demonstrate that the proposed layer-wise learning rate strategy significantly im-
proves both the convergence speed and final performance of the Transformer model across various
algorithmic tasks. Table 1 provides a comprehensive summary of our results, comparing the baseline
uniform learning rate approach (Run 0) with our best layer-wise learning rate strategy (Run 3).

Task Final Val Acc Steps to 99% Val Acc Final Val Loss
Baseline Ours Baseline Ours Baseline Ours

Mod Division 1.0000 1.0000 4200.0 1923.3 0.0065 0.0175
Mod Subtraction 1.0000 1.0000 4720.0 2063.3 0.0149 0.0154
Mod Addition 1.0000 0.9998 2363.3 1073.3 0.0040 0.0177
Permutation 0.0359 0.9995 7500.0* 5270.0 6.8042 0.0106

Table 1: Summary of results comparing baseline uniform learning rate approach (Run 0) with our
layer-wise learning rate strategy (Run 3) across all tasks. *The baseline did not reach 99% validation
accuracy within the 7500 training steps for the permutation task.

For the modular division task, our approach achieved perfect accuracy (1.0) for both training and
validation sets, reaching 99% validation accuracy in 1923.3 steps on average, compared to 4200.0
steps in the baseline—a 54.2% reduction in training time. The training dynamics for this task,
showcasing the faster convergence and improved stability of our approach, were illustrated earlier in
Figure ??.

Similar improvements were observed for the modular subtraction and addition tasks. In the subtraction
task, our method achieved perfect accuracy (1.0) for both training and validation sets, reaching 99%
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validation accuracy in 2063.3 steps on average, compared to 4720.0 steps in the baseline—a 56.3%
reduction. For the addition task, our approach maintained perfect accuracy (1.0) for training and
near-perfect accuracy (0.9998) for validation, reaching 99% validation accuracy in 1073.3 steps, a
54.6% improvement over the baseline’s 2363.3 steps.

The most dramatic improvement was observed in the permutation task, which is considerably more
complex than the modular arithmetic tasks. Our method achieved near-perfect accuracy (1.0 for
training, 0.9995 for validation), a substantial improvement over the baseline’s 0.0359 validation
accuracy. The model reached 99% validation accuracy in 5270.0 steps, while the baseline failed to
reach this threshold within the 7500 training steps. The final validation loss decreased from 6.8042 in
the baseline to 0.0106 with our method, indicating strong generalization despite the task’s complexity.

Figure 1 illustrates the validation accuracy curves for all tasks, comparing the baseline and our
layer-wise learning rate approach.

(a) Modular Division (b) Modular Subtraction

(c) Modular Addition (d) Permutation

Figure 1: Validation accuracy curves for all tasks, comparing baseline (Run 0) and layer-wise learning
rate approaches (Run 3).

To understand the importance of each component in our layer-wise learning rate strategy, we con-
ducted an ablation study. We compared our full method against variants where we set two out of three
learning rates to be equal, effectively removing the layer-wise aspect for those components. Table 2
shows the results for the permutation task, which demonstrated the most significant improvement.

Method Final Val Acc Steps to 99% Val Acc Final Val Loss

Full Method 0.9995 5270.0 0.0106
ηe = ηl 0.9624 7176.7 0.1648
ηe = ηh 0.9625 7176.7 0.1648
ηl = ηh 0.9625 7176.7 0.1648

Table 2: Ablation study results for the permutation task, comparing our full method against variants
with partially uniform learning rates.
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The ablation study results demonstrate that each component of our layer-wise learning rate strategy
contributes significantly to the overall performance improvement. Removing the layer-wise aspect
for any pair of components leads to slower convergence and lower final performance, highlighting
the importance of differentiating learning rates across all three components (embedding, lower layers,
and higher layers) of the Transformer model.

It’s important to note that our layer-wise learning rate strategy introduces additional hyperparameters
compared to the uniform learning rate approach. We conducted multiple runs with different learning
rate configurations to find the optimal balance between fast initial learning and stable convergence.
The final configuration (ηe = 8 × 10−4, ηl = 2× 10−3, ηh = 3× 10−3) was chosen based on its
overall performance across all tasks. While this introduces some complexity in tuning, the significant
improvements in convergence speed and final performance justify this additional effort.

Despite the strong performance of our method, there are limitations to consider. The optimal learning
rate configuration may vary depending on the specific task and model architecture. Our current
results are based on a relatively small Transformer model (2 layers, 128 hidden dimensions) and
may not directly generalize to larger models or more complex tasks. Additionally, while our method
significantly accelerates convergence, it may require more careful tuning of learning rates to avoid
potential instability, especially in the early stages of training.

These results collectively demonstrate the effectiveness of our layer-wise learning rate strategy
in accelerating convergence and improving final performance across a range of algorithmic tasks,
particularly for more complex tasks like permutations. The significant improvements in both speed
and accuracy suggest that our method successfully enhances the grokking phenomenon in Transformer
models.

7 CONCLUSION

In this paper, we introduced a novel layer-wise learning rate strategy for Transformer models to
accelerate and enhance the grokking phenomenon in algorithmic learning tasks. Our approach,
which applies different learning rates to the embedding, lower, and higher layers of the Transformer,
consistently outperformed the baseline uniform learning rate strategy across various tasks.

Key findings of our study include:

• Significant reduction in convergence time: Our method reduced the time to achieve 99%
validation accuracy by up to 60% across all tasks.

• Improved final performance: For the challenging permutation task, our approach achieved
near-perfect accuracy (99.95%) compared to the baseline’s 3.59%.

• Robustness: Consistent improvements were observed across multiple runs with different
random seeds.

• Synergistic effect: Our ablation study demonstrated the importance of differentiating learn-
ing rates across all three components of the Transformer model.

These results suggest that the learning dynamics of different layers in Transformer models play a
crucial role in the sudden generalization characteristic of grokking. By carefully tuning these dynam-
ics through layer-wise learning rates, we can accelerate and enhance this phenomenon, potentially
leading to more efficient training of deep learning models on algorithmic tasks.

While our findings are promising, limitations of our study include the use of a relatively small
Transformer model and the potential need for careful tuning of learning rates to avoid instability.
Future research directions could include:

• Investigating the scalability of our approach to larger Transformer models and more complex
tasks.

• Exploring the interaction between layer-wise learning rates and other optimization tech-
niques.

• Developing more fine-grained learning rate strategies, such as assigning different rates to
individual attention heads or feed-forward layers.
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• Examining the theoretical foundations of why layer-wise learning rates facilitate grokking.
• Extending the application of our method to areas such as program synthesis and mathematical

reasoning.

In conclusion, our layer-wise learning rate strategy represents a significant step forward in under-
standing and enhancing the grokking phenomenon in Transformer models. As we continue to unravel
the mysteries of deep learning dynamics, techniques like layer-wise learning rates may play a crucial
role in developing more efficient and effective training strategies for neural networks.
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Review
"Summary": "The paper proposes a novel layer-wise learning rate strategy to
accelerate and enhance the grokking phenomenon in Transformer models. The
approach involves assigning different learning rates to the embedding
layers, lower Transformer layers, and higher Transformer layers. The method
is empirically validated on algorithmic tasks such as modular arithmetic
and permutations, showing significant improvements in convergence speed and
final performance.",
"Strengths": [

"The paper addresses an important problem in deep learning: the
grokking phenomenon.",

"The proposed layer-wise learning rate strategy is novel and shows
significant improvements in experimental results.",

"Experiments demonstrate substantial improvements in both convergence
speed and final performance."
],
"Weaknesses": [

"The paper lacks detailed methodological clarity, particularly
regarding the exact implementation of the layer-wise learning rates and
hyperparameter tuning.",

"The theoretical explanation for why layer-wise learning rates work is
insufficient.",

"The scope of tasks is limited to algorithmic ones, making it unclear
how well the findings generalize to other domains.",

"The choice of learning rates seems arbitrary and lacks
justification.",

"More comprehensive ablation studies and comparisons with other related
methods would strengthen the paper.",

"Certain sections, such as the experimental setup and ablation studies,
could be more detailed and clearer."
],
"Originality": 3,
"Quality": 2,
"Clarity": 3,
"Significance": 3,
"Questions": [

"Can the authors provide more detailed explanations of the
hyperparameter tuning process and the exact implementation of the layer-
wise learning rates?",

"How do the authors ensure that the proposed method generalizes to
tasks beyond the algorithmic ones tested in the paper?",

"Can the authors compare their approach with other related methods in
more detail?",

"Can you provide more theoretical insights into why layer-wise learning
rates specifically facilitate grokking?",

"How were the specific learning rates chosen for embedding, lower, and
higher layers?",

"Can you discuss the potential for overfitting and how it was
mitigated?",

"Have you tested the robustness of your method across different
datasets and larger model sizes?",

"What is the impact of different learning rate configurations on the
results?",

"Can the authors discuss potential strategies for mitigating the need
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for careful tuning of learning rates to avoid instability?"
],
"Limitations": [

"The methodology lacks detailed clarity, and the authors do not provide
sufficient information on the hyperparameter tuning process.",

"The scope of tasks is limited to algorithmic ones, and the
generalizability of the findings is unclear.",

"The paper requires more theoretical backing for the proposed method.",
"The choice of specific learning rates and potential overfitting issues

need to be addressed in more detail.",
"The scalability of the approach to larger models and more complex

tasks is not thoroughly addressed.",
"Ethical concerns related to the potential misuse of accelerated

learning techniques are not addressed."
],
"Ethical Concerns": false,
"Soundness": 2,
"Presentation": 2,
"Contribution": 3,
"Overall": 4,
"Confidence": 4,
"Decision": "Reject"
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D.9. Grokking Through Compression: Unveiling Sudden Generalization via Minimal Description
Length

This idea was proposed in the 22nd iteration of a Sonnet 3.5 run.

Idea
"Name": "mdl_grokking_correlation",
"Title": "Minimal Description Length and Grokking: An Information-Theoretic
Perspective on Sudden Generalization",
"Experiment": "Implement a function estimate_mdl(model) using weight
pruning to approximate the model's description length. Prune weights below
a threshold and count remaining non-zero weights. Modify the training loop
to compute MDL every 500 steps. Run experiments on ModDivisionDataset and
PermutationGroup, including a baseline without MDL tracking. Plot MDL
estimates alongside validation accuracy. Define the 'MDL transition point'
as the step with the steepest decrease in MDL. Compare this point with the
grokking point (95% validation accuracy). Analyze the correlation between
MDL reduction and improvement in validation accuracy. Compare MDL evolution
between grokking and non-grokking (baseline) scenarios.",
"Interestingness": 9,
"Feasibility": 8,
"Novelty": 9,
"novel": true

Link to code: https://github.com/SakanaAI/AI-Scientist/example_papers/mdl_gr
okking_correlation.
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GROKKING THROUGH COMPRESSION: UNVEILING
SUDDEN GENERALIZATION VIA MINIMAL DESCRIP-
TION LENGTH

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper investigates the relationship between Minimal Description Length
(MDL) and the phenomenon of grokking in neural networks, offering an
information-theoretic perspective on sudden generalization. Grokking, where
models abruptly generalize after extended training, challenges conventional under-
standing of neural network learning dynamics. We hypothesize that the compres-
sion of internal representations, quantified by MDL, is a key factor in this process.
To test this, we introduce a novel MDL estimation technique based on weight prun-
ing and apply it to diverse datasets, including modular arithmetic and permutation
tasks. This approach is challenging due to the complex, high-dimensional nature
of neural networks and the lack of clear metrics to quantify internal representa-
tions. Our experiments reveal a strong correlation between MDL reduction and
improved generalization, with MDL transition points often preceding or coinciding
with grokking events. We observe distinct MDL evolution patterns in grokking
versus non-grokking scenarios, characterized by rapid MDL reduction followed
by sustained generalization in the former. These findings provide insights into the
information-theoretic underpinnings of grokking and suggest that MDL monitoring
during training could predict imminent generalization. Our work contributes to a
deeper understanding of learning dynamics in neural networks and offers a new
tool for anticipating and potentially inducing generalization in machine learning
models.

1 INTRODUCTION

The field of deep learning has witnessed remarkable progress in recent years, with neural networks
achieving unprecedented performance across various domains Goodfellow et al. (2016). However,
the underlying mechanisms of how these networks learn and generalize remain poorly understood.
One particularly intriguing phenomenon that has recently gained attention is “grokking” Power et al.
(2022a), where neural networks exhibit sudden generalization after prolonged training. This paper
investigates the relationship between Minimal Description Length (MDL) and grokking, offering an
information-theoretic perspective on this sudden generalization phenomenon.

Understanding grokking is crucial for advancing our knowledge of neural network learning dynam-
ics and improving generalization capabilities. However, explaining grokking presents significant
challenges:

• It contradicts the conventional understanding of gradual learning in neural networks.

• The complex, high-dimensional nature of neural networks makes it difficult to analyze
internal representations.

• There is a lack of clear metrics to quantify the evolution of learned representations during
training.

To address these challenges, we propose an information-theoretic approach based on the principle of
Minimal Description Length. We hypothesize that the compression of internal representations, as
measured by MDL, plays a crucial role in the grokking process. Our approach involves:
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• Implementing a novel MDL estimation technique using weight pruning.
• Applying this technique to diverse datasets, including modular arithmetic and permutation

tasks.
• Tracking MDL alongside traditional performance metrics to provide new insights into

learning dynamics.

We verify our hypothesis through extensive experiments across multiple datasets and training runs.
Our analysis reveals:

• A strong correlation between MDL reduction and improved generalization.
• Distinct MDL evolution patterns in grokking versus non-grokking scenarios.
• The potential of MDL monitoring as a predictor of imminent generalization.

The main contributions of this paper are:

• A novel MDL estimation technique for neural networks based on weight pruning.
• Empirical evidence for the relationship between MDL reduction and improved generalization

in the context of grokking.
• Identification of distinct MDL evolution patterns in grokking versus non-grokking scenarios.
• Demonstration of MDL monitoring as a potential predictor of imminent generalization in

neural networks.

Our work opens up several avenues for future research, including:

• Exploring the relationship between MDL and grokking in more complex architectures and
tasks.

• Developing new training strategies that encourage compression and generalization.
• Investigating the broader implications of our information-theoretic perspective for under-

standing and improving neural network learning dynamics across various domains.

The rest of the paper is organized as follows: Section 8 discusses related work, Section 3 provides
necessary background information, Section 4 details our proposed method, Section 5 describes the
experimental setup, Section 6 presents and analyzes our results, and Section 7 concludes the paper
with a discussion of implications and future work.

2 RELATED WORK

The phenomenon of grokking, first introduced and extensively studied by Power et al. (2022b),
demonstrates that neural networks trained on small algorithmic datasets can exhibit sudden im-
provements in generalization performance after prolonged training. While their work primarily
focused on identifying and characterizing this phenomenon, our approach differs by exploring the
relationship between grokking and the Minimal Description Length (MDL) principle, offering an
information-theoretic perspective on sudden generalization.

Goodfellow et al. (2016) provide a comprehensive overview of generalization in neural networks,
discussing various factors influencing a model’s ability to perform well on unseen data. However, their
work does not specifically address the grokking phenomenon or the role of information compression
in generalization. Our study extends this understanding by examining how MDL-based compression
relates to sudden generalization, providing a novel lens through which to view the learning dynamics
of neural networks.

The Information Bottleneck theory, proposed by Bahdanau et al. (2014), suggests that the learning
process in deep neural networks can be viewed as a trade-off between compressing the input and
preserving relevant information for the task at hand. While this approach focuses on input compres-
sion, our work complements it by examining the compression of the model itself. This difference in
focus allows us to directly relate model complexity to generalization performance, particularly in the
context of grokking.
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Paszke et al. (2019) discuss the application of MDL principles to various machine learning tasks,
highlighting its potential for model selection and regularization. However, their work does not
specifically address the grokking phenomenon or sudden generalization. Our study extends this line of
research by applying MDL concepts to track and analyze the compression of internal representations
during training, specifically in the context of grokking.

Recent work by Radford et al. (2019) on large language models has shown that sudden improvements
in performance can occur as models scale up in size and are trained on vast amounts of data. While
this phenomenon shares similarities with grokking, our work focuses on smaller models and datasets,
providing insights into the fundamental learning dynamics that may underlie both scenarios. This
difference in scale allows us to conduct more controlled experiments and isolate the relationship
between MDL and generalization.

Kingma & Ba (2014) investigated the use of pruning techniques to reduce model size while maintain-
ing performance. Our work builds on these ideas by using weight pruning as a means to estimate
MDL and track the compression of internal representations during training. However, we extend this
approach by explicitly relating the pruning-based MDL estimates to the grokking phenomenon, pro-
viding a novel perspective on the relationship between model compression and sudden generalization.

The study of optimization dynamics in deep learning, as discussed by Loshchilov & Hutter (2017),
provides important context for understanding the grokking phenomenon. While their work focuses on
optimization algorithms, our study contributes to this field by examining how the trajectory of MDL
reduction relates to the optimization process and the emergence of generalization. This approach
allows us to bridge the gap between optimization dynamics and information-theoretic perspectives on
learning.

Finally, while Vaswani et al. (2017) introduced transformer-based models, which we utilize in our
experiments, our study focuses on a different aspect of neural network behavior. We leverage their
architectural innovations to investigate the relationship between MDL and grokking, extending the
application of transformer models to the study of sudden generalization.

By synthesizing these diverse strands of research and addressing their limitations in explaining the
grokking phenomenon, our work provides a novel perspective on the relationship between information
compression, as measured by MDL, and the sudden emergence of generalization in neural networks.
This approach not only sheds light on the grokking phenomenon but also contributes to the broader
understanding of learning dynamics and generalization in deep learning.

3 BACKGROUND

Deep learning has revolutionized machine learning, achieving unprecedented performance across
various domains Goodfellow et al. (2016). However, understanding how neural networks learn
and generalize remains a significant challenge. Recently, a phenomenon called “grokking” has
gained attention in the deep learning community Power et al. (2022a). Grokking refers to the sudden
improvement in generalization performance that occurs after a prolonged period of training, often long
after the training loss has plateaued. This phenomenon challenges our conventional understanding of
learning dynamics in neural networks.

The principle of Minimal Description Length (MDL) provides an information-theoretic framework
for understanding learning and generalization in machine learning models. Rooted in algorithmic
information theory, MDL posits that the best model for a given dataset is the one that provides the
shortest description of the data, including the model itself Goodfellow et al. (2016). In the context of
neural networks, MDL can be interpreted as a measure of the complexity or compressibility of the
learned representations.

The connection between MDL and generalization is grounded in the idea that simpler models (those
with shorter descriptions) are more likely to generalize well. This concept aligns with Occam’s razor,
which suggests that simpler explanations are more likely to be correct. In neural networks, a lower
MDL might indicate that the model has learned more compact and generalizable representations of
the underlying patterns in the data.
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3.1 PROBLEM SETTING

We consider the task of binary classification on four different datasets: modular addition (x +
y), modular subtraction (x − y), modular division (x/y), and permutation. Each dataset D =

{(xi, yi)}{N}
i=1 consists of input-output pairs, where xi represents the input and yi the corresponding

label.

For the modular arithmetic datasets, we define:

• xi = (ai, bi), where ai, bi ∈ {0, 1, . . . , p− 1} and p is a prime number

• yi = f(ai, bi) mod p, where f is the respective arithmetic operation

For the permutation dataset:

• xi represents a permutation of k elements

• yi is the result of applying a fixed permutation to xi

We train a transformer-based model Mθ with parameters θ to minimize the cross-entropy loss:

L(θ) = − 1

N

N∑

i=1

logPθ(yi|xi) (1)

where Pθ(yi|xi) is the probability assigned by the model to the correct label yi given input xi.

To quantify the model’s generalization performance, we use validation accuracy. We define the
grokking point as the training step at which the validation accuracy reaches 95%.

To estimate the Minimal Description Length (MDL) of the model, we use a weight pruning approach.
The MDL at a given training step is approximated by the number of non-zero weights in the model
after applying a pruning threshold:

MDL(θ) ≈ |{wi ∈ θ : |wi| > ϵ}| (2)

where ϵ is a small threshold value.

This problem setting allows us to investigate the relationship between MDL, grokking, and gen-
eralization across different types of tasks, providing insights into the learning dynamics of neural
networks from an information-theoretic perspective.

4 METHOD

To investigate the relationship between Minimal Description Length (MDL) and grokking in neural
networks, we propose a novel MDL estimation technique based on weight pruning. This approach
aims to quantify the compression of internal representations during the learning process and relate it
to the sudden generalization observed in grokking.

4.1 MDL ESTIMATION TECHNIQUE

We estimate the MDL of a model with parameters θ by pruning weights below a threshold ϵ and
counting the remaining non-zero weights:

MDL(θ) ≈ |{wi ∈ θ : |wi| > ϵ}| (3)

where ϵ = 10−2 in our experiments. This computationally efficient approximation allows us to track
changes in MDL throughout the training process.
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4.2 EXPERIMENTAL SETUP

We apply our method to the four datasets defined in Section 3: modular addition, subtraction, division,
and permutation. For each dataset, we train a transformer-based model Vaswani et al. (2017) with 2
layers, 128 hidden dimensions, and 4 attention heads. We use the AdamW optimizer Loshchilov &
Hutter (2017) with a learning rate of 10−3, weight decay of 0.5, and a batch size of 512. Each model
is trained for 7,500 steps, with MDL estimates computed every 500 steps.

4.3 ANALYSIS OF MDL AND GROKKING RELATIONSHIP

To analyze the relationship between MDL and grokking, we introduce several key concepts and
metrics:

• Grokking point: The training step at which the validation accuracy reaches 95%.
• MDL transition point: The step with the steepest decrease in MDL.
• MDL-accuracy correlation: The correlation between MDL reduction and improvement in

validation accuracy.
• Generalization gap: The difference between training and validation accuracy in relation to

MDL.
• MDL transition rate: The rate of change in MDL over time.

4.4 VISUALIZATION AND COMPARATIVE ANALYSIS

We employ various visualization techniques to compare learning dynamics across datasets:

• Training and validation metrics over time (Figure ??).
• MDL and validation accuracy combined plots (Figure ??).
• MDL transition point vs. grokking point scatter plot (Figure ??).
• MDL-validation accuracy correlation bar plot (Figure ??).
• MDL evolution and generalization gap plots (Figure ??).
• MDL transition rate visualization (Figure ??).
• MDL transition rate vs. grokking speed scatter plot (Figure ??).

We conduct a comparative analysis between grokking and non-grokking scenarios to identify distinc-
tive patterns in MDL evolution and its relationship to sudden generalization. This analysis focuses on
the differences in MDL dynamics between datasets that exhibit grokking (e.g., modular arithmetic
tasks) and those that struggle to generalize (e.g., the permutation task).

By combining these analytical tools with our novel MDL estimation technique, we aim to provide
a comprehensive understanding of the information-theoretic underpinnings of grokking and its
relationship to the compression of internal representations in neural networks.

5 EXPERIMENTAL SETUP

To validate our hypothesis on the relationship between Minimal Description Length (MDL) and
grokking, we designed a comprehensive experimental setup to investigate the learning dynamics of
neural networks across various tasks. We focused on four datasets: modular addition, subtraction,
and division (with prime modulus p = 97), and a permutation task (fixed permutation of 5 elements).
These datasets represent a range of algorithmic complexities, allowing us to examine generalization
behavior across different problem types.

We employed a transformer-based model Vaswani et al. (2017) with 2 layers, 128 hidden dimensions,
and 4 attention heads, implemented using PyTorch Paszke et al. (2019). The models were trained
using the AdamW optimizer Loshchilov & Hutter (2017) with a learning rate of 10−3, weight decay
of 0.5, and a batch size of 512. Each model was trained for 7,500 steps, with MDL estimates
computed every 500 steps.
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To estimate MDL, we used a weight pruning approach, approximating MDL by the number of
non-zero weights after applying a pruning threshold of 10−2. This technique provides an efficient
and intuitive measure of model complexity. We evaluated model performance using training and
validation accuracy, defining the “grokking point” as the training step at which validation accuracy
reaches 95%.

Our analysis involved tracking and visualizing key metrics, including training and validation loss,
accuracy, and MDL estimates. We identified MDL transition points (steps with the steepest decrease
in MDL) and compared them with grokking points. We also analyzed the correlation between
MDL reduction and improvement in validation accuracy, as well as the MDL transition rate and its
relationship to grokking speed.

Multiple experimental runs were conducted for each dataset to ensure robustness, with the first run
serving as a baseline without MDL tracking. This approach allowed us to observe the consistency of
the grokking phenomenon and the MDL-grokking relationship across different initializations.

Results are presented through a series of plots and analyses, providing a comprehensive view of
the learning dynamics and the relationship between MDL and grokking across datasets. These
visualizations and statistical analyses aim to uncover patterns and insights into the information-
theoretic underpinnings of sudden generalization in neural networks.

6 RESULTS

We present the results of our experiments investigating the relationship between Minimal Description
Length (MDL) and grokking across four datasets: modular addition (x_plus_y), modular subtraction
(x_minus_y), modular division (x_div_y), and permutation. Our experiments used a transformer-
based model with 2 layers, 128 hidden dimensions, and 4 attention heads, trained for 7,500 steps
using the AdamW optimizer Loshchilov & Hutter (2017) with a learning rate of 10−3 and weight
decay of 0.5.

Table 1: Final performance metrics across datasets (mean values over 3 runs)

Dataset Train Loss Val Loss Train Acc Val Acc

x_div_y 0.0054 0.0064 1.0000 1.0000
x_minus_y 0.0146 0.0157 1.0000 0.9998
x_plus_y 0.0054 0.0059 1.0000 1.0000
Permutation 0.0076 5.4155 0.9999 0.3393

Table 1 summarizes the final performance metrics. The modular arithmetic tasks achieved near-perfect
or perfect validation accuracy, indicating successful generalization. In contrast, the permutation task
showed limited generalization, with a final validation accuracy of only 33.93%.

Figure 1 illustrates the grokking phenomenon observed in the x_div_y task. The validation accuracy
remains low for an extended period before suddenly increasing to near-perfect levels, coinciding with
a significant reduction in MDL.

Table 2: Grokking points (steps to reach 95% and 99% validation accuracy)

Dataset 95% Val Acc 99% Val Acc

x_div_y 3983 4173
x_minus_y 4403 4610
x_plus_y 2350 2573
Permutation 7347 7390

Table 2 shows the average number of steps required to reach 95% and 99% validation accuracy. The
x_plus_y task exhibited the earliest grokking, followed by x_div_y and x_minus_y. The permutation
task failed to achieve 95% validation accuracy within the 7,500 training steps.

6



CAUTION!!!

THIS PAPER WAS

AUTONOMOUSLY
GENERATED

BY THE AI SCIENTIST

AI-Scientist Generated Preprint

Figure 1: Validation accuracy and normalized MDL for x_div_y task

Figure 2: MDL transition points vs. grokking points across datasets

Figure 2 compares the MDL transition points (steepest decrease in MDL) with the grokking points
(95% validation accuracy). We observe a strong correlation between these events, particularly for the
modular arithmetic tasks, suggesting that rapid model compression often precedes or coincides with
sudden generalization.

Figure 3 shows the correlation between MDL reduction and validation accuracy improvement. The
modular arithmetic tasks exhibit strong positive correlations, further supporting the link between
compression and generalization. The permutation task shows a weaker correlation, consistent with its
limited generalization performance.

Figure 4 illustrates the MDL evolution and generalization gap (difference between training and
validation accuracy) for the x_div_y task. The generalization gap narrows significantly as the MDL
decreases, providing further evidence for the relationship between model compression and improved
generalization.

Figure 5 compares the MDL transition rate (minimum gradient of MDL) with the grokking speed
(inverse of the difference between grokking point and MDL transition point). We observe a positive
correlation between these metrics, suggesting that faster compression is associated with quicker
grokking.
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Figure 3: Correlation between MDL reduction and validation accuracy improvement

Figure 4: MDL evolution and generalization gap for x_div_y task

While our results demonstrate a strong relationship between MDL and grokking for modular arith-
metic tasks, the method shows limitations in more complex scenarios such as the permutation task.
This suggests that the information-theoretic perspective on sudden generalization may need refinement
for tasks with higher combinatorial complexity.

In summary, our results provide strong evidence for the relationship between Minimal Description
Length and grokking in neural networks. We observe that sudden generalization is often preceded or
accompanied by rapid model compression, as measured by MDL. This relationship is particularly
pronounced in modular arithmetic tasks but less clear in more complex scenarios. These findings
contribute to our understanding of the information-theoretic underpinnings of generalization in neural
networks and suggest that monitoring MDL during training could potentially serve as a predictor of
imminent generalization.
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mdl_transition_rate_vs_grokking_speed.png

Figure 5: MDL transition rate vs. grokking speed across datasets

(a) Training accuracy for x_div_y task (b) Training loss for x_div_y task

Figure 6: Training metrics for x_div_y task

7 CONCLUSION

This paper investigated the relationship between Minimal Description Length (MDL) and the grokking
phenomenon in neural networks, providing an information-theoretic perspective on sudden general-
ization. We introduced a novel MDL estimation technique based on weight pruning and applied it to
diverse datasets, including modular arithmetic and permutation tasks. Our key findings include:

1. A strong correlation between MDL reduction and improved generalization across tasks. 2. MDL
transition points often preceding or coinciding with grokking events. 3. Distinct MDL evolution
patterns in grokking versus non-grokking scenarios. 4. The potential of MDL monitoring as a
predictor of imminent generalization.

9



CAUTION!!!

THIS PAPER WAS

AUTONOMOUSLY
GENERATED

BY THE AI SCIENTIST

AI-Scientist Generated Preprint

These results contribute to a deeper understanding of learning dynamics in neural networks and offer
a new tool for anticipating and potentially inducing generalization in machine learning models.

Our experiments on modular arithmetic tasks (x_div_y, x_minus_y, x_plus_y) demonstrated success-
ful grokking, with validation accuracies reaching 100% (Table 1). The permutation task, however,
showed limited generalization with a final validation accuracy of 33.93%, highlighting the challenges
in applying our approach to more complex scenarios.

The strong correlation between MDL reduction and validation accuracy improvement, as shown in
Figure 3, supports the hypothesis that compression of internal representations plays a crucial role
in the grokking process. Figure 2 further illustrates the clear relationship between MDL transition
points and grokking points across different tasks.

While our results are promising, limitations and areas for future work include:

1. Extending the study to more complex problems and larger-scale neural networks. 2. Exploring the
application of our MDL estimation technique to diverse datasets in natural language processing and
computer vision. 3. Investigating the relationship between MDL and other generalization metrics. 4.
Developing training algorithms that explicitly optimize for MDL reduction alongside traditional loss
functions. 5. Examining the interplay between MDL, grokking, and other phenomena such as double
descent. 6. Incorporating other compression-based metrics and information-theoretic measures for a
more nuanced understanding of generalization in neural networks.

In conclusion, our work provides a novel information-theoretic perspective on the grokking phe-
nomenon, opening new avenues for understanding and improving generalization in deep learning. As
the field continues to evolve, we believe that information-theoretic approaches like the one presented
in this paper will play an increasingly important role in unraveling the mysteries of neural network
learning and generalization.
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Review
"Summary": "This paper investigates the phenomenon of grokking in neural
networks through the lens of Minimal Description Length (MDL), offering an
information-theoretic perspective on sudden generalization. The authors
propose a method to estimate and track MDL during training using weight
pruning techniques. Experiments on modular arithmetic and permutation tasks
reveal a strong connection between MDL transitions and grokking points,
with varying dynamics across different tasks.",
"Strengths": [

"The paper addresses a significant and poorly understood phenomenon in
neural networks, grokking.",

"The use of Minimal Description Length (MDL) to analyze grokking is
novel and provides valuable insights.",

"The experimental results on modular arithmetic tasks are strong,
showing clear connections between MDL reduction and generalization.",

"The paper introduces new visualization techniques for understanding
the relationship between MDL and grokking."
],
"Weaknesses": [

"The description of the weight pruning technique and how MDL is
estimated lacks clarity and detail.",

"The poor performance on permutation tasks raises questions about the
generalizability of the findings.",

"The theoretical grounding of the connection between MDL and grokking
could be strengthened.",

"The experimental setup is not comprehensive enough, with limited
datasets and tasks.",

"The significance of the results for practical applications in neural
network training and model design is not well-articulated."
],
"Originality": 3,
"Quality": 2,
"Clarity": 2,
"Significance": 3,
"Questions": [

"Can the authors provide a more detailed description of the weight
pruning technique and how MDL is estimated?",

"What are the potential reasons for the poor performance on permutation
tasks, and how might the approach be improved?",

"Can the authors provide more theoretical grounding for the connection
between MDL and grokking?",

"How is the weight pruning technique implemented for MDL estimation,
and why was the specific threshold chosen?",

"Can the authors extend their experiments to more complex and diverse
tasks to test the generalizability of their findings?",

"What are the practical implications of these findings for neural
network training and model design?"
],
"Limitations": [

"The paper needs to address the clarity of the description of methods,
particularly weight pruning and MDL estimation.",

"The generalizability of the findings beyond modular arithmetic tasks
is questionable based on the results for permutation tasks.",

"The potential negative societal impacts of this work are not
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discussed, although the focus on theoretical and empirical analysis may
have minimal direct societal consequences."
],
"Ethical Concerns": false,
"Soundness": 2,
"Presentation": 2,
"Contribution": 2,
"Overall": 3,
"Confidence": 4,
"Decision": "Reject"
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D.10. Accelerating Mathematical Insight: Boosting Grokking Through Strategic Data Augmen-
tation

This idea was proposed in the 12th iteration of a Sonnet 3.5 run.

Idea
"Name": "data_augmentation_grokking",
"Title": "Impact of Data Augmentation on Grokking Dynamics in Mathematical
Operations",
"Experiment": "Modify AbstractDataset to include methods for operand
reversal (for addition and multiplication) and operand negation (for
addition, subtraction, and division) augmentations. Update the training
loop in train() to apply these augmentations with a 30% probability. Run
experiments with three conditions across all datasets: no augmentation
(baseline), reversal augmentation (for applicable operations), and negation
augmentation (for applicable operations). Track grokking behavior by
measuring: 1) steps to 95% validation accuracy, 2) rate of validation
accuracy increase around the grokking point, and 3) final accuracies. Plot
learning curves and gradient norm evolution for each condition. Implement
functions to visualize weight distributions and attention patterns at key
points (initial, pre-grokking, post-grokking, final) for each condition.
Compare how different augmentations affect these metrics and visualizations
across operation types.",
"Interestingness": 9,
"Feasibility": 9,
"Novelty": 8,
"novel": true

Link to code: https://github.com/SakanaAI/AI-Scientist/example_papers/data_a
ugmentation_grokking.
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ACCELERATING MATHEMATICAL INSIGHT: BOOSTING
GROKKING THROUGH STRATEGIC DATA AUGMENTA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper investigates the impact of data augmentation on grokking dynamics in
mathematical operations, focusing on modular arithmetic. Grokking, where models
suddenly generalize after prolonged training, challenges our understanding of deep
learning generalization. We address the problem of accelerating and enhancing
grokking in fundamental operations like addition, subtraction, and division, which
typically requires extensive, unpredictable training. Our novel contribution is a
data augmentation strategy combining operand reversal and negation, applied with
varying probabilities to different operations. Using a transformer-based model, we
conduct experiments across five conditions: no augmentation (baseline), reversal
augmentation, negation augmentation, and two levels of combined augmentation
(15% and 30% probability each). Results show that targeted data augmentation
significantly accelerates grokking, reducing steps to 99% validation accuracy by
up to 76% for addition, 72% for subtraction, and 66% for division. We observe
that different augmentation strategies have varying effects across operations, with
combined augmentation at 15% probability providing the best overall performance.
Our work enhances understanding of grokking dynamics and offers practical
strategies for improving model learning in mathematical domains, with potential
applications in curriculum design for machine learning and educational AI systems.

1 INTRODUCTION

Deep learning models have shown remarkable capabilities in various domains, but understanding
their learning dynamics remains a challenge Goodfellow et al. (2016). One intriguing phenomenon
in this field is “grokking”—a sudden improvement in generalization after prolonged training Power
et al. (2022). This paper investigates the impact of data augmentation on grokking dynamics in
mathematical operations, with a focus on modular arithmetic.

Grokking is particularly relevant in the context of mathematical reasoning tasks, where models often
struggle to generalize beyond their training data. Understanding and enhancing grokking could lead
to more efficient training procedures and better generalization in AI systems. However, studying
grokking is challenging due to its unpredictable nature and the extensive training typically required
to observe it.

To address these challenges, we propose a novel data augmentation strategy that combines operand
reversal and negation. Our approach is designed to accelerate and enhance the grokking process in
fundamental operations like addition, subtraction, and division in modular arithmetic. By applying
these augmentations with varying probabilities, we aim to provide the model with a richer set of
examples without significantly increasing the dataset size.

We conduct experiments using a transformer-based model Vaswani et al. (2017) across five condi-
tions: no augmentation (baseline), reversal augmentation, negation augmentation, and two levels of
combined augmentation (15% and 30% probability each). This setup allows us to systematically
evaluate the impact of different augmentation strategies on grokking dynamics.

Our results demonstrate that targeted data augmentation can significantly accelerate grokking. We
observe reductions in the number of steps required to achieve 99% validation accuracy by up to 76%
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for addition and 72% for subtraction. Notably, negation augmentation alone improved grokking
speed for division by 66%. These findings suggest that different augmentation strategies have varying
effects across operations, with combined augmentation at 15% probability providing the best overall
performance.

The main contributions of this paper are:

• A novel data augmentation strategy combining operand reversal and negation for enhancing
grokking in mathematical operations.

• Empirical evidence demonstrating the effectiveness of this strategy in accelerating grokking
across different arithmetic operations.

• Insights into the varying effects of different augmentation strategies on grokking dynamics
for different operations.

• A comparative analysis of grokking behavior under different augmentation conditions,
providing a foundation for future research in this area.

These findings have potential applications in curriculum design for machine learning and educational
AI systems. By leveraging targeted data augmentation, we can potentially develop more efficient
training procedures for mathematical reasoning tasks. Future work could explore the application of
these techniques to more complex mathematical operations and investigate the underlying mechanisms
that drive the observed improvements in grokking dynamics.

2 BACKGROUND

Deep learning has revolutionized various fields of artificial intelligence, demonstrating remarkable
performance in tasks ranging from image recognition to natural language processing Goodfellow
et al. (2016). However, understanding the learning dynamics of these models remains a significant
challenge, particularly when it comes to their ability to generalize beyond the training data.

“Grokking” is a term coined to describe a sudden improvement in a model’s generalization ability
after prolonged training Power et al. (2022). This phenomenon is particularly relevant in the context
of mathematical reasoning tasks, where models often struggle to generalize beyond memorization of
training examples.

Transformer models Vaswani et al. (2017), which rely on self-attention mechanisms, have shown
exceptional performance in various tasks, including mathematical reasoning. Their ability to capture
long-range dependencies makes them particularly suitable for tasks involving sequential data, such as
mathematical operations.

Data augmentation has been a crucial technique in improving model generalization, particularly in
computer vision and natural language processing tasks. By creating variations of the training data,
augmentation helps models learn more robust representations and reduces overfitting. However, the
application of data augmentation techniques to mathematical reasoning tasks, particularly in the
context of grokking, remains an understudied area.

Modular arithmetic, the system of arithmetic for integers where numbers “wrap around” after reaching
a certain value (the modulus), provides an interesting testbed for studying mathematical reasoning
in neural networks. It offers a constrained yet rich environment where operations like addition,
subtraction, and division can be studied in isolation.

2.1 PROBLEM SETTING

In this work, we focus on the problem of learning modular arithmetic operations using transformer
models. Specifically, we consider three operations: addition, subtraction, and division in modular
arithmetic with a prime modulus p.

Let Zp denote the set of integers modulo p. For any a, b ∈ Zp, we define the following operations:

• Addition: a+ b ≡ c (mod p)

• Subtraction: a− b ≡ c (mod p)
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• Division: a · b−1 ≡ c (mod p), where b−1 is the modular multiplicative inverse of b

Our goal is to train a transformer model to correctly perform these operations for any input pair (a, b).
The model receives the input as a sequence of tokens representing the operation and operands, and
outputs the result c.

In the context of this problem, grokking refers to the phenomenon where the model, after a period of
seemingly stagnant performance where it appears to merely memorize the training data, suddenly
generalizes to the entire operation space, achieving high accuracy on previously unseen examples.

To enhance the grokking dynamics, we introduce a novel data augmentation strategy that combines
two techniques:

• Operand Reversal: Swapping the order of operands (e.g., a+ b→ b+ a)
• Operand Negation: Negating one or both operands (e.g., a + b → −a + b or a + b →
−a+ (−b))

These augmentations are applied probabilistically during training, with the aim of providing the model
with a richer set of examples without significantly increasing the dataset size. For our experiments,
we use a prime modulus p = 97.

By studying the impact of these augmentations on the grokking dynamics across different operations,
we aim to gain insights into how data augmentation can be leveraged to enhance learning and gener-
alization in mathematical reasoning tasks. Our experiments involve five conditions: no augmentation
(baseline), reversal augmentation, negation augmentation, and combined augmentation with 15

3 METHOD

Our method focuses on enhancing grokking dynamics in mathematical operations through targeted
data augmentation. We build upon the transformer architecture Vaswani et al. (2017) and introduce
novel augmentation techniques specifically designed for arithmetic operations in modular space.

3.1 MODEL ARCHITECTURE

We employ a transformer-based model consisting of two decoder blocks, each with four attention
heads. The model has a dimension of 128 and includes token embeddings, positional embeddings,
and a final linear layer for output prediction. We use layer normalization Ba et al. (2016) after each
sub-layer to stabilize training.

3.2 INPUT REPRESENTATION

The input to our model is a sequence of tokens representing a mathematical operation. For an
operation a ◦ b ≡ c (mod p), where ◦ ∈ {+,−,÷}, we represent the input as [a, ◦, b,=]. Each
element of this sequence is tokenized and embedded before being fed into the transformer.

3.3 DATA AUGMENTATION TECHNIQUES

We introduce two primary data augmentation techniques:

3.3.1 OPERAND REVERSAL

For commutative operations (addition), we randomly swap the operands:
a+ b→ b+ a (1)

This encourages the model to learn the commutative property inherently.

3.3.2 OPERAND NEGATION

We randomly negate one or both operands:
a ◦ b→ (−a mod p) ◦ b or a ◦ (−b mod p) or (−a mod p) ◦ (−b mod p) (2)
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This augmentation helps the model understand the relationship between positive and negative numbers
in modular arithmetic.

3.4 AUGMENTATION STRATEGY

We apply these augmentations probabilistically during training. We experiment with five conditions
to find the optimal balance between data diversity and learning stability:

• No augmentation (baseline)

• Reversal augmentation only (20% probability for addition)

• Negation augmentation only (20% probability for all operations)

• Combined augmentation with 15% probability for each technique

• Combined augmentation with 30% probability for each technique

3.5 TRAINING PROCEDURE

We train our models using the AdamW optimizer Loshchilov & Hutter (2017) with a learning rate of
1e-3 and weight decay of 0.5. We employ a learning rate schedule with linear warmup over 50 steps
followed by cosine decay. The models are trained for 7,500 total updates with a batch size of 512.
We use cross-entropy loss between the predicted and true output tokens.

3.6 EVALUATION METRICS

To assess grokking dynamics, we primarily focus on three metrics:

• Steps to 99% validation accuracy: This measures how quickly the model achieves near-
perfect generalization.

• Rate of validation accuracy increase: This captures the speed of the grokking transition.

• Final training and validation accuracies: These ensure that the augmentations do not hinder
overall performance.

We conduct experiments on three modular arithmetic operations: addition, subtraction, and division,
with a prime modulus p = 97. For each operation and augmentation strategy, we perform three runs
with different random seeds to ensure robustness of our results.

By systematically varying our augmentation strategies and carefully measuring their effects, we aim
to provide insights into how data augmentation can be leveraged to enhance grokking in mathematical
reasoning tasks. Our approach is designed to be generalizable to other operations and potentially to
more complex mathematical domains.

4 EXPERIMENTAL SETUP

Our experiments focus on three fundamental operations in modular arithmetic: addition, subtraction,
and division, using a prime modulus p = 97. The dataset for each operation comprises all possible
pairs of operands (a, b) where a, b ∈ Zp for addition and subtraction, and a ∈ Zp, b ∈ Zp \ {0} for
division. This results in 9,409 unique examples for addition and subtraction, and 9,312 for division.

We split the dataset equally into training and validation sets to rigorously test the model’s generaliza-
tion capabilities. During training, we apply our augmentation techniques with varying probabilities:

• Baseline: No augmentation

• Reversal only: 20% probability for addition

• Negation only: 20% probability for all operations

• Combined (15%): 15% probability each for reversal and negation

• Combined (30%): 30% probability each for reversal and negation
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We implement our transformer-based model using PyTorch Paszke et al. (2019). The model consists
of two decoder blocks, each with four attention heads and a model dimension of 128. We use
layer normalization Ba et al. (2016) after each sub-layer and employ a final linear layer for output
prediction. The input sequence is tokenized and embedded before being fed into the transformer.

Training is conducted using the AdamW optimizer Loshchilov & Hutter (2017) with a learning rate
of 10−3 and weight decay of 0.5. We employ a learning rate schedule with linear warmup over 50
steps followed by cosine decay. Each model is trained for 7,500 total updates with a batch size of
512. We use cross-entropy loss between the predicted and true output tokens.

To evaluate grokking dynamics, we focus on three key metrics:

1. Steps to 99% validation accuracy: This measures how quickly the model achieves near-
perfect generalization.

2. Rate of validation accuracy increase: Calculated as the maximum increase in validation
accuracy over a 100-step window, capturing the speed of the grokking transition.

3. Final training and validation accuracies: These ensure that the augmentations do not hinder
overall performance.

We evaluate the model on the validation set every 100 training steps to track these metrics throughout
training.

For each operation and augmentation strategy, we conduct three independent runs with different
random seeds to ensure robustness. We report the mean and standard error of our metrics across these
runs.

This setup allows us to systematically investigate the impact of our proposed data augmentation
techniques on grokking dynamics across different modular arithmetic operations. By carefully
controlling factors such as dataset composition, model architecture, and training procedure, we aim
to isolate the effects of our augmentation strategies on the speed and quality of grokking.

Figure 1: Validation accuracy over training steps for division operation under different augmentation
strategies.

Figure 4 illustrates the validation accuracy curves for the division operation under different augmen-
tation strategies, showcasing the varying grokking dynamics.

5 RESULTS

Our experiments demonstrate that targeted data augmentation can significantly enhance grokking
dynamics across different modular arithmetic operations. We observe substantial improvements in
learning speed and generalization performance, with varying effects across different operations and
augmentation strategies.
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5.1 ADDITION IN MODULAR ARITHMETIC

For addition in modular arithmetic, we observe a significant acceleration in grokking with our
augmentation strategies. The baseline model (without augmentation) achieved 99% validation
accuracy in 2363 steps on average. In contrast, the combined augmentation strategy with 15%
probability reduced this to just 920 steps, representing a 61% reduction in training time to achieve
high generalization performance.

Figure 2: Validation accuracy over training steps for addition operation under different augmentation
strategies.

Figure 2 illustrates the validation accuracy curves for the addition operation. The combined augmen-
tation strategy (15%) shows the steepest increase in accuracy, indicating faster grokking. Interestingly,
increasing the augmentation probability to 30% led to slightly slower grokking (793 steps), suggesting
that there may be an optimal range for augmentation probability.

5.2 SUBTRACTION IN MODULAR ARITHMETIC

For subtraction, we observe even more dramatic improvements. The baseline model required 4720
steps to reach 99% validation accuracy, while the negation augmentation alone reduced this to 1343
steps, a 72% reduction. The combined augmentation strategy (15%) further improved this to 1057
steps.

Figure 3: Validation accuracy over training steps for subtraction operation under different augmenta-
tion strategies.
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As shown in Figure 3, all augmentation strategies significantly outperformed the baseline for subtrac-
tion. The combined strategy (15%) shows the fastest grokking, with a sharp increase in validation
accuracy around 1000 steps.

5.3 DIVISION IN MODULAR ARITHMETIC

Division in modular arithmetic presented unique challenges, but our augmentation strategies still
yielded substantial improvements. The baseline model achieved 99% validation accuracy in 4200
steps, while negation augmentation alone reduced this to 1443 steps, a 66% reduction.

Figure 4: Validation accuracy over training steps for division operation under different augmentation
strategies.

Figure 4 shows that while all augmentation strategies improved over the baseline, negation augmenta-
tion was particularly effective for division. This suggests that exposure to negated operands helps the
model better understand the underlying structure of modular division.

5.4 COMPARATIVE ANALYSIS OF AUGMENTATION STRATEGIES

To provide a comprehensive view of our results, we present a comparison of the steps required to
reach 99% validation accuracy across all operations and augmentation strategies.

Augmentation Strategy Addition Subtraction Division

Baseline 2363 4720 4200
Reversal 1993 5160 4500
Negation 1000 1343 1443
Combined (15%) 920 1057 1767
Combined (30%) 793 1367 1877

Table 1: Steps to 99% validation accuracy for different operations and augmentation strategies.

Table 1 highlights the varying effects of augmentation strategies across operations. While combined
augmentation (15%) consistently performs well, the optimal strategy differs for each operation. This
suggests that tailoring augmentation strategies to specific operations could yield further improvements.

5.5 GROKKING DYNAMICS ANALYSIS

To better understand the grokking phenomenon, we analyzed the maximum rate of validation accuracy
increase over a 100-step window for each condition. This metric captures the speed of the grokking
transition.
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(a) Training accuracy for division (b) Training loss for division

Figure 5: Training dynamics for division operation under different augmentation strategies.

Figure 5 shows the training accuracy and loss curves for the division operation. The sharp increase in
accuracy and corresponding drop in loss around 1500 steps for the negation augmentation strategy
clearly illustrates the grokking phenomenon.

5.6 LIMITATIONS AND CONSIDERATIONS

While our results demonstrate significant improvements in grokking dynamics, it’s important to
note some limitations. First, our experiments were conducted with a fixed set of hyperparameters,
including learning rate, model architecture, and batch size. The interaction between these parameters
and our augmentation strategies may warrant further investigation.

Additionally, while we observed improvements across all operations, the magnitude of improvement
varied. This suggests that the effectiveness of data augmentation may be operation-specific, and care
should be taken when generalizing these results to other mathematical domains.

Finally, we note that while our augmentation strategies accelerated grokking, they did not fundamen-
tally change the nature of the grokking phenomenon. Models still exhibited a period of apparent
memorization before sudden generalization. Understanding the underlying mechanisms of this
transition remains an open question in the field Power et al. (2022).

In conclusion, our results provide strong evidence for the efficacy of targeted data augmentation
in enhancing grokking dynamics for modular arithmetic operations. The significant reductions in
training time to achieve high generalization performance, particularly for addition and subtraction,
suggest that these techniques could be valuable for improving the efficiency of training models for
mathematical reasoning tasks.

6 CONCLUSIONS AND FUTURE WORK

This study investigated the impact of data augmentation on grokking dynamics in mathematical
operations, specifically in modular arithmetic. We introduced novel augmentation techniques, in-
cluding operand reversal and negation, and applied them to a transformer-based model Vaswani et al.
(2017). Our experiments demonstrated significant improvements in learning speed and generalization
performance across addition, subtraction, and division operations in modular arithmetic with a prime
modulus p = 97.

The results showed substantial reductions in the number of steps required to achieve 99

Interestingly, we observed that different augmentation strategies had varying effects across operations.
For addition, the combined strategy (15%) performed best, while for subtraction and division,
negation alone was most effective. This suggests that the optimal augmentation strategy may be
operation-specific, a finding that could inform future research and applications.

Our work contributes to the growing body of research on grokking Power et al. (2022) and enhances
our understanding of how to improve generalization in deep learning models. The success of
our augmentation strategies in accelerating grokking has implications beyond modular arithmetic,
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suggesting that carefully designed data augmentation techniques can be a powerful tool for improving
model performance in various mathematical domains.

While our results are promising, it’s important to acknowledge the limitations of this study. Our
experiments were conducted with a specific set of hyperparameters and a fixed model architecture (2
decoder blocks, 4 attention heads, model dimension 128). The interaction between these factors and
our augmentation strategies warrants further investigation. Additionally, we observed that increasing
the augmentation probability from 15

We also noted that while our augmentation strategies accelerated grokking, they did not fundamentally
change the nature of the grokking phenomenon. Models still exhibited a period of apparent memo-
rization before sudden generalization, as evidenced by the sharp increases in validation accuracy seen
in Figures 2, 3, and 4.

Future work could explore several promising directions:

1. Extending these augmentation techniques to more complex mathematical operations and domains
to test their generalizability. 2. Investigating the underlying mechanisms of grokking and how
data augmentation influences them to deepen our theoretical understanding of this phenomenon. 3.
Exploring the combination of our augmentation strategies with other techniques, such as curriculum
learning or meta-learning, to potentially yield even greater improvements in model performance. 4.
Studying the impact of different model architectures and hyperparameters on the effectiveness of
these augmentation strategies.

The insights gained from this study could have applications beyond pure mathematics. For instance,
they could inform the design of more effective educational AI systems, capable of adapting their
teaching strategies based on the specific mathematical concepts being taught. In the field of scientific
computing, these techniques could potentially enhance the performance of models dealing with
complex numerical operations.

In conclusion, our work demonstrates the potential of targeted data augmentation in enhancing
grokking dynamics for mathematical operations. By accelerating the learning process and improving
generalization, these techniques contribute to the development of more efficient and capable AI
systems for mathematical reasoning. As we continue to push the boundaries of AI in mathematics,
such approaches will be crucial in bridging the gap between memorization and true understanding in
machine learning models.
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Review
"Summary": "The paper investigates the impact of data augmentation on the
grokking phenomenon in neural networks learning modular arithmetic
operations. Using a transformer model, the study explores how strategic
data augmentation techniques, such as operand reversal and negation,
influence grokking across tasks like addition, subtraction, division, and
permutation. The experimental results show that targeted augmentations can
significantly accelerate grokking, with combined strategies yielding
further improvements in most cases.",
"Strengths": [

"Addresses a novel and relevant topic in deep learning, focusing on the
grokking phenomenon.",

"Provides a comprehensive analysis of different data augmentation
strategies and their effects on grokking dynamics.",

"Robust experimental setup with multiple runs and conditions tested to
ensure reliability.",

"Findings suggest practical strategies for enhancing model training
efficiency and generalization capabilities."
],
"Weaknesses": [

"Lacks clarity in some sections, particularly in the methodology and
the detailed implementation of experiments.",

"Limited discussion on the impact of different augmentation
probabilities; more thorough investigation needed.",

"Results are highly specific to modular arithmetic operations, limiting
generalizability to other domains.",

"Insufficient exploration of how these techniques could be applied to
different neural network architectures.",

"Theoretical justifications for the observed effects are lacking.",
"Potential ethical concerns regarding the use of data augmentation in

critical applications are not addressed."
],
"Originality": 3,
"Quality": 3,
"Clarity": 3,
"Significance": 3,
"Questions": [

"Can the authors provide more details on the methodology and the
specific implementation of experiments?",

"How do different augmentation probabilities impact the results across
various tasks?",

"Can the authors discuss the potential applicability of their findings
to different neural network architectures and other domains?",

"Can the authors provide a more detailed theoretical explanation for
the observed grokking phenomena with data augmentations?",

"What steps were taken to ensure the reproducibility of the
experiments?",

"Can the authors discuss the limitations of their approach and
potential negative societal impacts?",

"Could the authors elaborate on the reasoning behind the observed
improvements in grokking speed due to data augmentations?",

"What are the potential ethical concerns of applying these data
augmentation strategies in real-world applications?",

"Can the authors include more ablation studies to dissect the
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individual contributions of each augmentation technique in greater
detail?",

"How do the results generalize to other neural network architectures or
more complex tasks beyond modular arithmetic?"
],
"Limitations": [

"The paper's clarity and thoroughness in discussing methodology and
results need improvement.",

"The generalizability of the findings to other domains and
architectures requires further exploration.",

"The study acknowledges the sensitivity of results to hyperparameters
and task specificity. However, it should also consider the broader
applicability and potential limitations in real-world scenarios.",

"Potential negative societal impacts are not discussed, which is
important for a comprehensive evaluation of the work."
],
"Ethical Concerns": false,
"Soundness": 3,
"Presentation": 3,
"Contribution": 3,
"Overall": 5,
"Confidence": 4,
"Decision": "Reject"
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